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Abstract

NEW APPROACH TO OPTICAL ANALOG-TO-DIGITAL (A/D) CONVERSION

based on oversampling and error diffusion coding techniques is proposed.

This new approach combines the high resolution capabilities of classical

oversampled A/D conversion with the high speed of optical processing technology

to extend the resolution and conversion rates beyond those currently possible with

other electronic or optical converters. The optical approach is device independent,

requiring only optical thresholding, subtraction, and digital logic for implemen-

tation. The underlying concept is to trade bandwidth for improved amplitude

resolution using advanced signal processing techniques.

This new approach to optical A/D conversion differs from classical Nyquist rate

optical A/D conversion in that each signal sample is not necessarily quantized to

the closest reconstruction level. The analog input signal is first optically sampled

at a frequency much greater than the Nyquist frequency and is then quantized by

a modulator which incorporates one-bit quantizers and linear filters in a negative

feedback architecture for the purpose of reducing the quantization noise within

the signal baseband. This in-band noise reduction is accomplished by spectrally

shaping the quantization noise, forcing most of the noise power to frequencies above

the signal's cutoff frequency. The output of the modulator, which is a high-rate,

single-bit digital optical word, is subsequently processed by a digital decimation

filter which removes the out-of-band noise and generates a high resolution digital

approximation to the input analog signal at the signal's Nyquist rate.

In this dissertation, the theory, design, analysis, and implementation of an op-

tical oversampled A/D converter are addressed. The theory of oversampled A/D

V



conversion is first presented and then extended to the design of an optical im-

plementation of an oversampled converter. Next, sources of error specific to the

optical architecture are investigated to determine their impact on overall converter

performance. Proof-of-concept operation is demonstrated through the design, im-

plementation and evaluation of a first-order noninterferometric optical modulator

using multiple quantum well devices. Finally, multidimensional extensions of this

one-dimensional optical approach are presented and applications and advantages

are discussed.
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Chapter 1

Introduction

OPTICS HAS LONG HELD THE PROMISE OF HIGH-SPEED, HIGH-THROUGHPUT

parallel information processing. The focus of its early applications was

on analog signal processing techniques such as the optical Fourier trans-

form, matrix-vector processors, and correlators. During this period, optics was used

almost exclusively for front-end, pre-processing of wide-bandwidth, high-speed ana-

log signals which were subsequently digitally processed using electronic techniques.

Digital signal processing provides higher resolution, improved flexibility and func-

tionality, and increased noise immunity over its analog counterparts and therefore

is the preferred method for accurate signal processing. Since the majority of signals

encountered in nature are continuous in both time and amplitude, the analog-to-

digital (A/D) interface is generally considered to be the most critical part of the

overall signal acquisition and processing system. Because of the difficulty in achiev-

ing high-resolution and high-speed A/D converters, this A/D interface has been and

continues to be a barrier to the realization of high-speed, high-throughput systems.

Until recently, digital optical information processing was believed to be a technol-

ogy whose time had not yet come, but someday might. Since the early 1980's,

however, optical device technology has enjoyed tremendous progress as a result of

technological breakthroughs which have made possible numerous practical optical

devices, some of which produce nonlinear effects, the requisite function for digital

processing. As the optics community embraces digital optical computing and the

1
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fs

Filtering Sampling Quantization Digital Coding

Figure 1.1: Typical analog-to-digital converter block diagram.

electronics industry continues to develop smaller and faster digital processors, the

need for a high-speed A/D interface becomes increasingly important. The focus

of this research is to investigate the use of optical techniques to improve the per-

formance of this interface and thereby benefit not only electronic but also future

optical digital signal processing systems.

1.1 Background and Motivation

A/D conversion is the process by which a continuous-time, continuous-amplitude

signal is converted to a discrete-time, discrete-amplitude or digital signal. This

process typically employs the four functions depicted in Figure 1.1. The analog

input signal x(t) is first bandlimited to the range 0 :5 f. :_ fB (Hz) by an analog filter

to ensure protection against aliasing that could occur 'during the ensuing sampling

operation. The sampling operation in a conventional Nyquist rate A/D converter

is chosen to satisfy the minimum Nyquist criterion: fs - fN = 2 fB, where fs is the

sampling frequency, fN is the Nyquist frequency, and fB is the constrained signal

bandwidth. The output from the sampler is z,, - x(nTs) where Ts is the uniform

sampling period Ts = l/fs. The scalar quantization process maps each continuous-

amplitude input Xn to one value in a discrete-amplitude ensemble q,. Based on the

results of this mapping, the digital processor generates the digital code of the level

that most closely approximates the input signal level.
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Figure 1.2: Structure of a fully-parallel or flash quantizer.

1.1.1 Nyquist Rate Conversion

There axe several different types of uniform scalar quantizer structures available

for A/D conversion. In a fully-parallel or flash quantizer, the analog input to the

quantizer is simultaneously compared to 2b - 1 different reference levels, where b is

the resolution of the quantizer in bits. Figure 1.2 shows the structure of a fully-

parallel quantizer. Here, Xk, k = 1, 2, ...26 - 1 are the reference levels associated

with the 2' - 1 different comparators. Although achieving the fastest conversion

rates possible [3, 4], these converters are exponentially complex, with the number

of comparators doubling for each additional bit of resolution. For example, a high-
resolution 16 bit parallel A/D converter requires 2' - 1 = 65,535 different reference

levels. For an input with a dynamic range of 0 to 5 volts, this requires that adjacent

reference levels differ by only 76 tV. This precision exceeds the capability of current

very large scale integration (VLSI) processing. Although laser trimming and self-

calibration techniques can be employed to extend the resolution of these converters

[5], these approaches result in increased fabrication complexity and cost. For these

reasons, flash converters are limited to approximately 8 to 10 bits resolution and

are therefore not generally suitable for high-resolution A/D conversion.
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Figure 1.3: Structure of a full-search quantizer.

A converter which can produce medium resolution on the order of 12 to 14 bits

is the half-flash converter, also called a subranging, or two-pass, converter. Here,

the overall resolution is broken down into two, lower resolution conversions, each

of which is performed by a flash converter. Higher resolution can be achieved with

this technique, but at the cost of conversion speed.

The full-search quantizer is similar to the flash converter but instead of perform-

ing a direct comparison with 2b - 1 different threshold levels, uses an optimization

routine to determine the reference level closest to the input. Figure 1.3 shows a

schematic of the full-search operation. In this case, the algorithm uses the inner

products (x - i,)' = x2 - 2xi + 1 and therefore, given the input x, finds the ref-

erence level 1, that minimizes (1? - 2xz ) for all i. This type of quantizer requires

2b - 1 products and 2 b - 1 comparisons for each quantization decision.

One method of further reducing the complexity of the converter is to use a suc-

cessive approximation quantizer. In this approach, a tree-structured search routine

is used which successively improves the digital approximation of the analog input

signal. Figure 1.4 shows the operations associated with the successive approxi-

mation routine. Figure 1.4(a) shows the tree-structured search routine for a 3-bit

quantizer. The z,, i = 1, 2,3 inside the boxes represent the reference levels, and

the digital bits above each path represent the bit assigned by each decision. Fig-

ure 1.4(b) shows the steps associated with the successive approximation approach.

Here, the input is first compared to the reference level z3 and found to be greater.

Therefore the first bit assigned is a '1'. During step 2, the input is determined to

be less than x5 and therefore a '0' is assigned. This process then continues until the
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Figure 1.4: Structure of a successive approximation quantizer (a) tree-structured
search routine for a 3-bit quantizer (b) steps associated with the successive approx-
imation quantization.
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Figure 1.5: Schematic diagram of a 4-bit electrooptic A/D converter.

full resolution of the converter is achieved. This type of converter is slower than

the flash converter, but requires less hardware for implementation. The successive

approximation quantizer also achieves linear hardware complexity.

In this section, we have presented a brief overview of some of the techniques

used for A/D conversion and their associated advantages and disadvantages. Next,

we will discuss some of the optical methods that have been used to implement A/D

conversion.

1.1.2 Optical A/D Conversion

Probably the most successful optical A/D conversion technique was developed by

Taylor in 1975 [6]. He recognized that the periodicity of the output of an inter-

ferometric electrooptic modulator with applied voltage was homomorphic to the

periodic variation of a binary representation of an analog quantity. A 4-bit imple-

mentation of this concept is shown in Figure 1.5 [7].

The basic optical component used in this architecture is a channel waveguide
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version of a Mach-Zehnder interferometric modulator. The interferometer consists

of an electrooptic crystal containing a single-mode input optical waveguide which

branches at a 'Y' to split the optical power into two equal components. The light

in the two paths then travels an equal distance before recombining at the second

'Y' and exiting the crystal. In most cases of practical interest, the crystal is either

LiTaO3 or LiNbO 3 . The input analog voltage is applied to one arm of the inter-

ferometer through the coplanar electrodes shown in the figure. In the absence of

an applied field, the light from the two paths recombines in phase and produce a

maximum in the output intensity. With an electric field applied to the electrode,

the phase velocity of the light propagating in that arm is changed as a result of

the linear electrooptic effect. It is easily shown that the output intensity of a single

interferometer varies as

where V is the static phase difference between the two paths and 0 is the electrooptic

phase difference given by

Here, An is the refractive index change, V is the applied voltage, L is the modulator

length, and k is a constant which depends on the electrooptic parameters of the

crystal, the electrode spacing, and optical wavelength.

In Figure 1.5, the analog input signal V is applied in parallel to one arm of

each of the four modulators, one for each bit of resolution. The optical output from

each modulator is detected by an avalanche photodiode (APD) which converts the

optical signal to an electronic signal and also provides amplification. The electronic

signal from each modulator is then compared to a reference signal, obtained from

the common light source. The output of each comparator is either a binary '1' or

'0', depending on whether the modulator output intensity is greater than or less

than lo/2, respectively. The output of the top modulator represents the least sig-

nificant bit (LSB) in the digital word and that of the bottom modulator is the most

significant bit (MSB). The output intensity, the threshold, and the corresponding

binary representation for each modulator are shown in Figure 1.6. The Gray-code
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Figure 1.6: Intensity versus voltage for a 4-bit electrooptic A/D converter with a
Gray-code output.
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representation in Figure 1.6 is achieved by controlling the static phase difference in

each modulator by applying the appropriate dc biases shown in Figure 1.5.

This electrooptic A/D converter provides several distinct advantages. Like the

successive approximation converter discussed in Section 1.1.1, this optical converter

is linear in complexity. Another important advantage is the decoupling of the analog

sampled signal from the optical sampling signal. This eliminates the distortion

effects common to diode-bridge sampling circuits which tend to couple the sampling

signal into the converter circuitry. A limitation of this type of converter is that

each additional bit of resolution requires a doubling of the electrode length of the

least significant bit modulator. In LiNbO3, this produces a transit-time limitation

on performance of approximately 6 bits at 1 GHz. Other electrooptic crystals

exist which produce larger refractive index changes and therefore could improve

the performance of this transit-time limit. However, most of these crystals also

have larger loss mechanisms and therefore would produce loss-limited performance

instead. The development of crystals with large electrooptic coefficients and low

losses is currently an active research area.

Other types of optical A/D converters have also been investigated, but with

much less success than Taylor's electrooptic converter. Most were limited by speed,

complexity, or resolution and therefore did not warrant further investigation. For ex-

ample, Tsunoda proposed optical A/D conversion based on a matrix-multiplication

formalism [8]. in this implementation, an astigmatic optical processor [9] was used

with the electronic analog input signal driving an optical beam deflector. This

method of optical A/D conversion was limited by the speed capacity of the deflec-

tor, C = K/r, where K is the number of resolvable spots addressable and r is the

time required for random access to a specific location. Other methods of optical

A/D conversion can be found in [10, 11, 12, 13, 14, 15].

1.1.3 Oversampled A/D Converters

From the above background we can make some general observations regarding

Nyquist rate electronic and electrooptic A/D converters. The performance of Nyquist
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rate electronic A/D converters continues to improve as new, more advanced pro-

cessing techniques improve circuit integration and thereby increase circuit speed.

Their performance, however, is ultimately limited by the number and spacing of

the reference levels that can be generated and resolved. Conventional integrated

electrooptic A/D converters have typically used guided-wave structures which are

either loss or transit-time limited in performance.

A technique which has become popular in the audio industry is that of over-

sampled A/D conversion or oversampled sigma-delta (EA) modulation. The basic

architecture of an oversampled A/D converter, which consists of a quantizer, two

differencing nodes, and a single discrete-time delay element, was first introduced

in 1960 by C. C. Cutler [16). In this patent, Cutler described this system as a
"quantizer with a single step of error compensation". Inose and Yasuda [17] later

introduced a slightly different form of this architecture which contained a quantizer,

one differencing node, and a discrete-time integrator. They called their architecture

a "Delta-Sigma" modulator. The modern popularity, much of the original analysis,

and the name "Sigma-Delta" modulation can be directly attributed to Candy and

his colleagues [18, 19, 20, 21]. A fully equivalent A/D conversion technique which

uses the same architecture as that proposed by Cutler, called error diffusion coding,

was later developed by Floyd and Steinberg [22] for use in the field of image halfton-

ing. In this case, the digital representation of the input image is bilevel. These two

techniques have recently been shown to obey a common, underlying theoretical basis

[23], which we will use in developing our optical architectures.

Oversampled A/D converters provide several distinct implementation advan-

tages which account for their recent popularity. Oversampled converters use low

resolution quantizers which makes them more robust against circuit imperfections

than conventional Nyquist rate flash or successive approximation converters, since

circuit errors can be made small compared to the quantizer error. Also, by def-

inition, the sampling frequency is large relative to the Nyquist frequency of the

sampled signal and therefore the complexity of the anti-aliasing filter used to ban-

dlimit the input signal can be reduced. For electronic applications, these converters

also lend themselves to small VLSI circuit area.



CHAPTER 1. INTRODUCTION 11

1.2 Scope of This Dissertation

The focus of this research is to improve the performance of the A/D interface

by using optical technology and oversampling techniques. Once the fundamental

concepts have been developed, we will analyze the operation and performance, and

demonstrate proof-of-concept operation of the oversampled optical A/D converter.

As a result of this research, we hope to introduce a new method of optical A/D

conversion based on oversampling techniques which can extend the resolution and

conversion rates beyond those currently possible with other electronic or electrooptic

A/D conversion techniques.

In Chapter 2, the basic concepts and underlying theory of oversampled A/D

conversion are first introduced. The operation and analysis of the modulator and

digital postprocessor, the two key components of any oversampled A/D converter,

are the focus of this chapter. Several different classifications of oversampled modu-

latu, are introduced and contrasted according to the way each spectrally shapes the

quantization noise and input analog signal. The operation of the modulator is then

described according to a set of difference equations, and the concept of spectral noise

shaping is formalized. The digital postprocessor, which consists of a digital low pass

filter and a decimator, is then described and performance estimates are developed

for the overall oversampled A/D converter in terms of signal-to-quantization-noise

ratio (SQNR).

The theory of operation of one particular optical device, the multiple quantum

well (MQW) modulator, and its application to several different optical oversampled

converter architectures is the topic of Chapter 3. Here, we describe how the MQW

modulator can be used to implement the optical functional requirements necessary

for both the modulator and digital postprocessor. Speed and energy requirements

of the constituent optical devices and the overall converter are also examined.

In Chapter 4, we investigate sources of error in the oversampled error diffusion

modulator resulting from linear arithmetic errors, non-white quantization noise

characteristics, and stage-to-stage matching tolerances. Converter performance

degradations are quantified in terms of fractional reduction in the SQNR.
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An experimental demonstration of one specific realization of a noninterferometric

optical oversampled modulator using MQW modulators is presented in Chapter

5. The proof-of-concept operation of this optical modulator is compared to the

characteristics developed in Chapters 3 and 4, and some general comments about

the operation and performance of the optical oversampled modulator are made.

One of the benefits that optics provides to the oversampled A/D converter im-

plementation is parallel processing. In Chapter 6, we present multidimensional

optical extensions of the basic 1-D temporal optical error diffusion architecture pre-

sented in Chapter 3. In this case, 2-D temporal, 2-D spatial, and 3-D temporal and

spatial error diffusion architectures are presented and the applications and specific

advantages associated with each are discussed.

Finally, in Chapter 7 we conclude by summarizing the results of this research,

presenting specific contributions, and proposing open issues and future areas of

investigation.



Chapter 2

'Oversampled A/D Conversion

O VERSAMPLED A/D CONVERSION RELIES ON A ONE-DIMENSIONAL, TEM-

poral form of error diffusion coding, whereby a large error associated with

a single sample is diffused over many subsequent samples. In oversampled

A/D converters, the error to be diffused is generated by a low resolution quantizer,

and the diffusion is implemented by embedding the quantizer and a linear filter in

a feedback architecture. Figure 2.1 shows a generalized block diagram of an over-

sampled A/D converter. The analog signal x(t) is first bandlimited to the range

0 < f. < fB (Hz) by an anti-aliasing filter and is then sampled at a rate fs > fN,

where fs is the sampling frequency, fN = 2f, is the Nyquist frequency of the sam-

pled signal, and fB :_ fs/ 2 is the constrained signal bandwidth. The output of the

sampler is then fed to the modulator which provides coarse amplitude quantization

I-bit b-bits
fs>> fN fs fN

Filtering Sampling Quanhizanion Digital Postprocessing

Figure 2.1: Generalized block diagram of an oversampled A/D converter.
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and spectral shaping of the quantization noise. The digital postprocessor, which

consists of a digital low pass filter (LPF) and a decimator, removes the quantization

noise which was spectrally shaped by the modulator, provides anti-aliasing protec-

tion, and reduces the rate to the original sampled signal's Nyquist rate by trading

word rate for word length.

The recent popularity of oversampled A/D converters can be attributed pri-

marily to a maturing of silicon processing technology. VLSI CMOS and BiCMOS

processes are capable of producing sub-micron integration which, in turn, provides

the capability for higher speed operation. The majority of oversampled A/D con-

version applications to date have been in the audio industry, where the analog input

signal bandwidth is small compared to the operating speeds of the VLSI circuits.

One of the obvious advantages of oversampled A/D converters is a relaxing of the

requirements on the anti-aliasing filter used to bandlimit the analog input signal.

Since the sampling frequency is much higher than the Nyquist frequency of the

input signal, the cutoff characteristics of the anti-aliasing filter are not as severe

as those used with conventional Nyquist rate converters, and therefore the filter

complexity and consequently cost are reduced. Another advantage is that high

resolution A/D conversion can be achieved without precision component matching

or self-calibration techniques. Oversarnpled A/D converters also provide scalable

resolution; the amplitude resolution of the oversampled converter can be increased

without increasing the number of levels of the quantizer, by simply including more

samples in the local averaging process of the postprocessor, making higher resolution

possible without increased converter complexity.

We now proceed to discuss the theory and operation of the oversampled A/D

modulator and digital postprocessor.

2.1 The Modulator

The function of the modulator in an oversampled A/D converter is to quantize the

analog input signal and reduce the quantization noise within the signal baseband.

This is accomplished through the use of a low-resolution quantizer, oversampling,
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X(Z)+ BW U(Z)Z)C(z) Y(Z

Figure 2.2: General linear feedback coder and decoder.

negative feedback, and linear filtering.

2.1.1 Classification

There are two general coding (modulation) techniques associated with oversampling

modulators which are classified according to the location of the linear filters within

the feedback structure and whether or not the signal is spectrally altered by the

filters: predictive and noise shaping coding. A description of these coding techniques

follows [241 and can be extended to include EA modulation, interpolative coding,

and combinations of linear predictive and noise shaping coding. If the quantizer

is modeled as an additive noise source with the noise being added to the input

sample, and linear transform theory is applied, the general linear feedback coder

and decoder structure has the form shown in Figure 2.2. Here Q is the quantizer, and

B(z), C(z), and D(z) represent the z-transforms of the feedforward, feedback, and

decoding filters, respectively. X(z), U(z), Q(z), and Y(z) represent the z-transforms

of the input sample sequence x , the quantizer input sample sequence u,, the coder

output sample sequence qn, and the system output sample sequence y,, respectively.

The output of the coder can be described by

Q) = B(z)X(z) + E(z) (2.1)

1 +B(z)C(z) '

where E(z) is the z-transform of the quantizer error sequence e. = q, - u.. The

purpose of the decoder is to compensate for any distortion of the signal introduced
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I +,

Figure 2.3: General predictive coder and decoder.

by the coder and is therefore necessarily described by

1 + B(z)C(z) (2.2)
D(z) = B(z)

The output of the overall coder-decoder system is then
E(z)

Y(z) = D(z)Q(z) = X(z) + B(z) (2.3)

Predictive coders reduce the dynamic range of the quantizer input by subtracting

an estimate of the input *, from the input sample sequence z,. The quantizer step

size is then adjusted to this new, reduced range and therefore the magnitude of the

quantizer error is directly reduced. As a result of this process, the input signal is

spectrally shaped by this differencing operation. For the general class of predictive

coders, the z-transforms satisfy the following relations

Q(z) = H,(z) [X(z) + E(z)], (2.4)

where
1we(z) = 1=+C(z) and D(z) = 1 + C(z). (2.5)

Figure 2.3 shows a block diagram of a general predictive coder and decoder. Here

H;(z) = 1 - H1(z) = C(z)/1 + C(z). Delta modulation (251 and differential
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U(z) E _ I

Figure 2.4: General noise shaping or error diffusion coder and decoder.

pulse code modulation (DPCM) are the most common forms of predictive cod-
ing. In delta modulation, H;(z) = z- 1, the coder differentiates the input signal x ,

D(z) = 1/1 - z 1 , and therefore the decoder integrates the coder output sequence
q,. Consequently, y, degrades due to enhanced noise and channel error accumula-
tion. For rapidly varying input signals, predictive coders are also known to exhibit

slope overload errors.

Noise shaping or error diffusion coding does not reduce the magnitude of the

quantizer noise directly, but instead spectrally shapes the noise such that the noise
that falls within the signal baseband is reduced and. forced to higher frequencies

where it can be subsequently removed through low pass filtering. The general class

of noise shaping coders satisfy the relation

Q(z) = X(z) + H,,(z)E(z), (2.6)

where

H,(z) = 1 - C(z) and D(z) = 1. (2.7)

It is clear from Equations (2.6) and (2.7) that no spectral shaping of the signal
occurs with noise shaping coding. The block diagram of the general noise shaping
coder and decoder is shown in Figure 2.4. Here HL(z) = 1 - H,,(z) = C(z). In-

terpolative coding and EA modulation are both examples of noise shaping coding.
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Quantizer

-(nT)

Figure 2.5: Block diagram of recursive error diffusion modulator.

The single-loop EA modulator can be considered a special case of an interpolative

modulator with the linear filter H&(z) = 1/H(z) specialized to an ideal infinite

impulse response (IIR) filter and implemented in the feedforward path of the coder.

The error diffusion coding architecture shares a homomorphic relationship with the
EA architecture (see Appendix A for details), but implements a-finite impulse re-

sponse (FIR) filter H,(z) in the feedback path making it preferable for optical

implementation. We will focus on the operation and application of the error diffu-

sion coding architecture exclusively throughout the remainder of this dissertation

and will therefore drop the noise shaping subscript on the feedback filter transfer
function. We will also explicitly include a unit delay element from H(z) to represent

the time delay associated with the quantization process.

2.1.2 Operation

Figure 2.5 shows the block diagram of a generalized recursive error diffusion mod-

ulator. Here, H(z) represents the z-transform of a causal, unity dc gain filter and

z - ' is a unit sample delay. The unity gain criterion is necessary to ensure complete

diffusion of the error signal e,. In the simplest case of first-order error diffusion,
H(z) = 1, and the architecture of Figure 2.5 can be equivalently represented as the
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traditional single-loop EA modulator [18].

The input to the modulator, x, is generated by oversampling the analog input

signal x(t) at fs > fN. The input is assumed to be in the range x, E f-b, b), where

we use the usual definition of the half-open interval [a, b) = {x : a < x < b}. The

difference between the modulator input and a delayed version of the quantizer error,

En-_, is quantized by the binary quantizer, where the quantizer error is defined as

the difference between the output and the input to the quantizer, e - q(u,) - U'.

For H(z) = 1 the nonlinear difference equation describing this modulator is

Un = Xn - Cn_1 = Xn + un_1 - q(un.-1); n = 1, 2,... (2.8)

The memoryless uniform binary quantizer assigns the digital output level according

to
+ if u > 0

q(Un) = (2.9)

otherwise
where A is the quantizer step size and un is the quantizer input. It is easy to show

that choosing A = 2b ensures that the quantizer does not overload as long as the

input remains within its range. Since un = xn - en, Equation (2.8) can be written

as
q(un)= Zn + en-en- . (2.10)

Agna qYuazatwn enor

In Equation (2.10), the quantity en is the quantization error that would be seen at

the modulator output if there were no feedback loop. However, as a result of the

negative feedback, the first-order difference or discrete-time derivative of the error,

En - en-1, appears at the output instead. The hope is that this difference signal is

concentrated at high frequencies and can be removed by the digital low pass filter

in the postprocessor. If the quantization noise can be shown to be uncorrelated

with the input signal and have statistical moments consistent with a uniform white

process, we can justifiably refer to this operation as noise shaping, since only the

quantization noise will be affected by the filtering operation. Gray [26] has shown

that the quantization noise spectrum of a single-loop EA modulator is in fact cor-

related with the input and is not white but contains discrete spectral components
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whose amplitudes can have a significant impact on modulator performance. He

has also shown that higher-order modulators, such as multi-loop and multi-stage

modulators, generate quantization noise which is asymptotically uncorrelated and

has white statistics making the noise shaping characterization appropriate for these

modulators. In Chapter 4 we extend Gray's analysis and show that these same

results hold for the error diffusion modulator.

To demonstrate the operation of a first-order modulator with a dc input, consider

Figure 2.6. Here x,, = x = 0.1 and the quantizer takes on values q, E {-0.5, +0.5}.

Figure 2.6(a) shows a first-order error diffusion modulator and Figure 2.6(b) shows

the numerical evaluation of each of the variables in Figure 2.6(a) for ten consecutive

sample intervals. By examining the quantizer output sequence q, it is clear that

the sample mean of the modulator output equals the dc input x. Therefore, the

modulator maintains the output sample average at the value of the input. This

is demonstrated in Figure 2.6(b) using analog averaging: 1/10 ' = 0.1. Fig-

ure 2.7 shows how the sample average of the quantizer output converges to the dc

input as the number of samples in the averaging process increases. Under normal

operation, the output of the quantizer is fed to the digital postprocessor which

performs this averaging function digitally. A dc input can be considered as an

approximation to a slowly varying input and therefore represents the operation

expected in the case of a large oversampling ratio where fs > fN.
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Quantizer
x(nT) +' u(nT) ] q(T)

"e (nT)

H(z) I

(a)

Xn En Un qn

0.4 0.1 0.5
0.1 - 0.2 -0.3 -0.5
0.I1, 0.2 0.3 0.5

0.1 -0.4 -0.1 -0.5
0.1 0.0 0.5 0.5
0.1 0.4 0.1 0.5
0.1 -0.2 -0.3 -0.5
0.1 0.2 0.3 0.5
0.1 -0.4 -0.1 -0.5
0.1 0.0 0.5 0.5

1.0/10=0.1

(b)

Figure 2.6: Example of first-order modulator operation (a) first-order error diffusion
modulator (b) numerical evaluation of each variable for ten consecutive sample
intervals with a dc input of 0.1 units.
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Figure 2.7: Plot of quantizer output sample average for x,, = 0.1.

If we assume white quantization noise characteristics and use z-transform tech-
niques, the variables in Figure 2.5 can be recast in terms of spectral noise shaping

as follows:
E(z) = Q(z) - g(z) = Q(z) - X(z) + z-'E(z)H(z). (2.11)

Next, the quantization error of the entire modulator, .- q(u,) - x,, can be related

to the quantizer error, e, = q(u,) - u., by

E(Z)
G(z) - =1 - z-Ill(z), (2.12)

where t(z) and E(z) are the z-transforms of 1. and e., respectively. From Equa-

tion (2.12) it becomes clear that the overall modulator quantization error is a filtered

or spectrally shaped version of the quantizer error. The higher the order N of the

filter H(z), the more in-band noise suppression can be expected. Figure 2.8 shows

the noise shaping characteristics for first- and second-order noise shaping filters. For

an N11-order transversal filter that satisfies the unity gain criteria and generates N
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Figure 2.8: Noise shaping characteristics for first- and second-order filters.

zeros in the transfer function at z = 1, the filter weights are given by the binomial
coefficients

wi=-(-1)1 for i = 1, 2,..., N, (2.13)

where the expression
n - n- (2.14)

r (n - r)!r!

is the binomial coefficient.

An Nnh-order error diffusion modulator which uses a transversal filter with coeffi-

cient weighting described by Equation (2.13) is shown in Figure 2.9. For modulators

with N > 2 and filter weights described by Equation (2.13), stability of the feedback

loop is an issue that must be addressed [27].

An alternate method of achieving higher order noise shaping and avoiding sta-

bility problems is to use a cascade of single-loop modulators, called a multi-stage

architecture [28, 29, 30], shown in Figure 2.10 for the case N = 2. This method of
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Quantizer

+ W,

+ I2

Figure 2.9: Block diagram of an NMh-order error diffusion modulator.
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Figure 2. 10: Two-stage error diffusion architecture.

implementing higher-order modulators is guaranteed to be no-overload stable, how-

ever, care must be taken to ensure proper gain matching between the individual

first-order sections. In Chapter 4 we will evaluate these gain matching tolerances

for the architecture shown in Figure 2.10.
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Figure 2.11: Two-stage decimation filter.

2.2 The Postprocessor

As discussed earlier, the function of the postprocessor is to digitally filter and dec-

imate the output of the modulator such that the quantization noise that was spec-

trally shaped by the modulator is removed through low-pass filtering and the output

digital signal is decimated to the Nyquist rate of the original sampled signal. An

ideal low-pass filter with cutoff frequency fB is generally used to quantify limit-

ing case performance. Since the ideal low-pass filter can only be approximated in

practice, other practical filters have been investigated for this application [31]. A

popular decimation filter, shown in Figure 2.11, consists of a sinck(f) filter which

down-samples the signal to four times the Nyquist frequency, followed by a low-pass

baseband filter which further down-samples the signal to the Nyquist frequency [32].

This technique of successively reducing the sampling rate by a factor of two can also

be extended to include more than two filter stages.

The sinck(f) filter is comprised of a cascade of comb filters and can be described

by the z-transform

D )(z) = [h-.z) E - (2.15)
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which has the frequency response

Isn(f) = sinc(f) MiirfT k e-ifTMI (2.16)Hi~) il'~k( [ - MisinrfT, , ewT ,

"m~ntu& phase

where M1 is the decimation factor of the filter. Candy has shown that for k = N+ 1,

the sinck(f) filter is a practical alternative to the ideal low-pass filter in terms of

the trade-offs between the quantization noise power and the oversampling ratio

[211. The filter described by Enuation (2.15) is also hardware efficient and can be

realized in two sections without multipliers or the storage of the filter coefficients.

The first section, which implements the denominator of Dl(z), is comprised of

a cascade of k discrete-time integrators operating at the original sampling rate,

fs. The second section, which implements the numerator of Di(z), is a cascade

of k discrete-time differentiators operating at the reduced rate fs/M due to the

resampler. Modulo arithmetic is used within the sinck(f) filter to suppress register

overflow. As an example of the hardware efficiency of this particular filter structure,

for k = 2, fs = 256 kHz and an intermediate sampling frequency of 8 kHz, the

sinc2(f) filter requires only four adders, four 1-bit storage registers, and a multiply-

by-eight circuit that is implemented by a 3-bit shift [33]. The second-stage baseband

filter D2(z) is usually selected based on application specific requirements such as

passband linearity, width of the transition band, and rejection of spurious signals

in the stop band. In many cases, a simple linear phase transversal filter is used for

the second stage.

2.3 System Performance

A convenient measure by which to compare an A/D converter's performance is the

maximum signal-to-quantization noise ratio (SQNRt,.). SQNRW is defined as

the ratio of the output power at the frequency of a full-scale input sinusoid to the

quantization noise power within the signal baseband [34]. In the case of an over-

sampled A/D converter, analytic evaluation of this expression requires knowledge

of the quantizer error spectrum and the postprocessor filter transfer function. If
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we assume white quantization noise characteristics and an ideal low pass filter with
cutoff frequency fB, the SQNR,. for an Nh-order modulator with a full-scale input
range of ±A/2 can be shown to be

3 [2N+ 11] M 2 N+l,(.7
SQNR,,(M, N) = 3 . 2+]MNI (2.17)

SQN,~MN =2 1 7r
2N

where N represents the order of the modulator and M is the oversampling ratio,

defined as
fs (2.18)

MfN

For comparison, the SQNRI, of a conventional Nyquist rate uniform quantizer
with b bits resolution can be shown to be [35]

SQNR,,,.(b) - 3- 22 - '. (2.19)

Equations (2.17) and (2.19) provide a complete description of the relationship be-

tween the modulator order, oversampling ratio, SQNR,., and number of equivalent
bits resolution. If we know the modulator sampling rate and the input analog sig-
nal bandwidth, the upper bound resolution of the converter can be calculated using

these two equations. Figure 2.12 shows the theoretical SQNRP,(M,N) and equiva-

lent resolution for first- through fourth-order oversampled modulators as a function

of oversampling ratio. Results for N = 1 are also included because, although the
additive noise model does not predict the spectral characteristics of the quantization
noise, it does yield accurate results for the SQNRI [26]. The case of no noise shap-

ing represents the SQNRI that can be expected if the same quantizer, embedded
in the feedback loop of the oversampled modulator, were simply oversampled and

digitally filtered. The slope of this curve is 3 dB per octave and is included only
for comparison. The slope of the N = 1 curve is 9 dB per octave and that of the

N = 2 curve is 15 dB per octave, showing the significant advantage achieved by

using a noise shaping modulator.
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2.4 Summary

In this chapter, we have introduced the concepts necessary to the understanding of

oversampled A/D conversion. The principal components of an oversampled A/D

converter are a modulator and a digital postprocessor. The sampling frequency of

such a converter is, by definition, much greater than that required by the Nyquist

criterion.

There are two general coding techniques associated with the oversampled mod-

ulator, predictive and interpolative coding. Predictive coders spectrally shape both

the analog input signal and the quantizer noise, but they suffer from channel error

accumulation and slope overload. Interpolative or noise shaping coders spectrally

shape only the quantization noise and are much more robust against noise and signal

dynamics.

The function of the modulator is twofold: to quantize the input analog signal

using a low resolution quantizer and to spectrally shape the quantization noise

such that the noise power falling within the baseband is reduced and reshaped

to frequencies above the signal cutoff. This is accomplished using oversampling,

negative feedback, and linear filtering techniques.

The function of the digital postprocessor is to remove the quantization noise

above the signal baseband using a low pass filter, provide anti-aliasing protection,

and reduce the rate to the Nyquist rate of the sampled signal by trading word rate

for word length. Many different filter architectures are currently available which

perform this function, with the most popular being the sinck(f) filter. This filter is a

practical alternative to the ideal low-pass filter in terms of the trade-offs between the

quantization noise power and the oversampling ratio and is also hardware efficient

and can be realized without multipliers or the storage of the filter coefficients.

The combined operation of modulation and decimation filtering makes 16 bit res-

olution possible using only a two-level quantizer. This is a fundamentally different

approach from classic Nyquist rate quantizers, in which the resolution is determined

by the number and spacing of reference levels in the quantizer.



Chapter 3

Optical Oversampled A/D

Conversion

A N OPTICAL IMPLEMENTATION OF AN OVERSAMPLED A/D CONVERTER

can provide several advantages specifically associated with optical tech-

nology. First, optical sampling rates exceed electronic sampling rates,

making larger oversampling ratios and therefore higher resolution possible. Simi-

larly, for a given oversampling ratio, the higher optical sampling rate allows conver-

sion of larger bandwidth input signals. Another advantage associated with optical

sampling is the decoupling of the sampled and sampling signals, achieved when

the sampling signal is optical and the sampled signal is electronic. Alternatively,

an all-optical A/D converter would provide compatibility between an input ana-

log optical signal and an output digital optical signal and is therefore desirable for

future all-optical computing applications. The inherent parallelism that optics pro-

vides can also be used to extend this A/D conversion technique to multidimensional

applications.

31
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3.1 Multiple Quantum Well Devices

In this section, we focus on the optical devices necessary to implement an optical

oversampled A/D converter. From the theoretical development in Chapter 2, there

are two principal functions which require optical implementation: the modulator

and the digital postprocessor. The requisite functionality of the optical devices used

in the modulator will depend on the specific modulator architecture. If the N h-

order error diffusion modulator of Figure 2.9 is chosen, then the functions necessary

are optical quantization, subtraction, and transversal filtering. If the multi-stage

modulator of Figure 2.10 is chosen instead, then only optical quantization and sub-

traction are required. An optical realization of the digital postprocessor will require

digital optical logic to implement the multi-bit full adders and storage registers.

The optical oversampled modulators considered in this research use low reso-

lution, one-bit quantizers, which are elementary threshold devices. Any optically

bistable device can serve in this capacity. A wide range of optical devices and tech-

niques which can provide the desired functionality are currently available. A good

review of optical bistability and existing devices can be found in [36, 37, 38]. Our

goal in developing an optical oversampled A/D converter is to extend the resolu-

tion and conversion rates beyond those currently possible with other electronic or

optical converters. In order to accomplish this goal, high speed optical devices are

required. We will focus on a new optical device which has become popular in optical

signal processing applications because of its high-speed and low power consumption

operation: the multiple quantum well modulator.

Multiple quantum well (MQW) devices consist of alternating thin layers of two

semiconductor materials, the most studied to date being GaAs and AlGaAs. The

thin crystal layers are typically grown using advanced growth techniques such

as molecular beam epitaxy (MBE) or metal-organic chemical vapor deposition

(MOCVD), which have the ability to grow these layers with atomic precision. The

operation of these devices can be understood by considering the effect of the layered

structure on the electrons and holes within the material. The electrons and holes

in the semiconductor material see a minimum energy in the GaAs 'well' material
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Figure 3.1: Energy band diagrams of quantum well devices (a) with no applied field
(b) with electric field applied perpendicular to the layers.

and therefore the AlGaAs material on either side appears as a 'barrier'. Because
the semiconductor layers are so thin, the electrons and holes behave as 'particles in

a box', just as in elementary quantum mechanics problems. The resulting quantum

confinement causes discrete energy levels of the electrons and holes. One important

consequence of this energy discretization is that very strong absorption peaks called

exciton absorption peaks appear at the edges of these steps, even at room temper-

ature. When an electric field is applied perpendicular to the layers, the electrons

and holes move to lower energies, and the optical transition energy decreases, re-

sulting in a shift in the wavelength of the absorption peak. This can be understood

with the aid of the energy band diagrams shown in Figure 3.1. Figure 3.1(a) shows

the energy band diagram under conditions of no applied electric field. The optical

transition energy is represented here by the length of the arrow. When an electric

field is applied, the bands tilt as shown in Figure 3.1(b), both the electron and hole

move to lower energies, and the optical transition energy is decreased. Since pho-

ton energy is inversely proportional to wavelength, this decrease in optical energy

corresponds to an increase or red-shift in the wavelength of the absorption peaks.
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Figure 3.2: General schematic for a transmissive-type QCSE modulator.

This shifting of the absorption peaks is the underlying principle of the quantum

confined Stark effect (QCSE) [39, 40]. The basics of QCSE modulators have been

extensively reviewed elsewhere [41, 42, 43], and therefore we only present a brief

summary of the theory and operating characteristics necessary to understand the

application of these devices to the optical oversampled A/D converter.

Since a change in optical absorption at a specific wavelength can be affected by

a change in the applied electric field, QCSE or electroabsorptive modulators can

be produced. In most instances, the structure used in these modulators is a p-i-n

diode. Figure 3.2 shows the circuit schematic for a general transmissive-type QCSE
modulator. The quantum well layers are placed within the intrinsic region of the

p-i-n diode. The modulator (diode) is externally connected to an electronic biasing

circuit that controls the electric field across the device. An important advantage

associated with this type of structure is that the p-i-n diode is operated in a reverse

bias configuration and therefore, very low operating energies can be achieved while

maintaining large electric fields across the quantum wells. With the configuration

shown in Figure 3.2, true optoelectronic feedback is produced. Since the modulator

structure is basically a photodiode, optical energy incident on the diode produces
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a photocurrent. The photocurrent flows through the electronic biasing circuit pro-
ducing a change in the voltage across the diode which, in turn, changes the optical
absorption of the modulator, thereby completing the feedback loop.

Another important class of QCSE modulators is the reflective-type modulator.

In this type of modulator, a highly reflective mirror is grown on the back of the

device and therefore, the incident light passes through the MQW material twice
before exiting the modulator. Larger optical absorption can be achieved with the

same applied field as in the transmissive-type modulators using this technique. If

a partially-reflecting mirror is grown on the front of the reflection-type modula-
tor, then a Fabry-Perot 6talon is created around the MQWs. The cavity causes

an increase in the field strength at the Fabry-Perot wavelength which produces
larger shifts of the exciton absorption peaks than in a modulator without an 6talon.
This particular modulator structure, sometimes called a reflection electroabsorption

modulator (REAM) or an asymmetric Fabry-Perot modulator, has gained consid-

erable attention recently because of its lower insertion loss, higher contrast ratios,

and lower operating voltages [44, 45, 46, 47, 48].

The operating characteristics of the modulator greatly depend on the electronic

biasing circuit and the sign of the feedback. In general, the feedback can be de-
scribed by two simultaneous relations. The first describes the operation of the

quantum well device as a photodetector and can be written as

IC = I,(V, Pc, A) = S(V, A). Pnci (3.1)

where I, is the current through the modulator, V is the voltage across the modulator,

P, is the incident optical power, A is the wavelength of the incident light, and S is

the responsivity of the detector measured in amperes per watt. The second relation

necessary to describe the feedback comes from the operation of the electronic biasing

circuit

,-- I(V), (3.2)

where the current Ic is a function of the biasing circuit parameters such as supply

voltage and circuit component values.

From a linearized stability analysis of Equations (3.1) and (3.2), we can deduce
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the sign of the feedback and therefore describe the operation of the MQW modula-

tor. If we assume that the MQW device is modeled as a capacitor with capacitance

C, and consider the change in voltage v about the equilibrium point, we obtain to

first-order the equilibrium solutions [43]

dv dl, dS]
d - - P"- v, (3.3)
dt L dV dV J

assuming current flow in the direction shown in Figure 3.2. Equation (3.3) has

the form of a classic first-order differential equation which has as its solutions ex-

ponential terms, with characteristics defined by the term in the square brackets.

If this term is positive, the feedback will be positive creating unstable operating
conditions and causing the solution to grow without bound. If the term is negative,

the feedback will also be negative and the solution is stable. Under most operating

conditions, the electronic biasing circuit has positive slope resistance and therefore

dI,/dV < 0. From this analysis we can now identify the sign of the feedback based

on these parameters
Pd <  ; positive feedback

(3.4)

V > 0; negative feedback.

Figure 3.3 shows the responsivity of a specific QCSE modulator, the self electro-

optic effect device (SEED) [431, as a function of wavelength. Two operating wave-

lengths which satisfy the two feedback conditions described in Equation (3.4) are

identified in Figure 3.3. Point A corresponds to conditions under which increasing

voltage produces decreasing responsivity, and therefore, this operating point is un-

stable. At point B, the responsivity increases with increasing voltage and therefore

this operating point is stable.
We now describe the operation of the MQW modulators required to implement

the optical oversampled A/D converter.
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Figure 3.3: Responsivity curves for self electrooptic effect device. Point A represents
an unstable operating point since dS/dV < 0. Point B represents a stable operating
point because dS/dV > 0.
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Figure 3.4: Schematic diagram of a transmissive-type symmetric self electrooptic
effect device (S-SEED).

3.1.1 Optical Bistability

The principle function required in any A/D converter is quantization. In the over-

sampled A/D converter, a one-bit quantizer or simple threshold device is frequently

used. One method of achieving optical thresholding is to use a device with optically

bistable characteristics. If the MQW modulator feedback is positive, corresponding

to operation at an unstable operating point, optical bistability can be achieved. A

series of two MQW modulators, called a symmetric modulator, produces improved

bistable characteristics over those of a single device and also provides some addi-

tional benefits which include optical gain, tolerance to optical power variations, and

non-critical biasing [49].

Figure 3.4 shows a schematic diagram of a transmissive-type symmetric SEED

(S-SEED). This configuration is bistable in the ratio of the incident optical powers

Pin and Pi,,.,. Figure 3.5 shows the transfer characteristics for both P, and P, 2

versus Pi, with the input P,, held constant. These curves were generated using

the reflectivity data from [50] and the techniques described in [43]. In order to

achieve one bit quantization with these characteristics, we use one-half of the P,
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Figure 3.5: Transfer characteristics for a symmetric MQW modulator with constant
PI,, (a) Pt. versus Pi,, (b) Pu2 versus P,,,.

versus Pj, curve in Figure 3.5(b). By always using the transition from the low-

Pow2 state to the high-Pt 2 state, we can achieve the necessary optical thresholding

function. The transition back to the low-Ph state at the end of each clock cycle

is achieved using either natural RC decay or by dynamic electrical techniques.

Another advantage of using the configuration in Figure 3.4 is that optical gain

can be achieved. This can be understood with the aid of Figure 3.6. By setting

the state of the symmetric device with low-power optical signals P,, and P,.,

and subsequently, one clock cycle later, reading the information out with a higher

power optical clock, time sequential gain [491 can be achieved. This gain mechanism

can be used to overcome optical losses in the system as well as to implement an

offset bias for the quantizer in the noninterferometric modulator realization to be

described later.

3.1.2 Optical Subtraction

Figure 3.7 shows the structure and configuration of a reflection-type MQW modu-

lator, as it is used for noninterferometric optical subtraction.
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Figure 3.6: Demonstration of time sequential gain using a symmetric MQW mod-
ulator.
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Figure 3.7: Structure and configuration of the reflection electroabsorption modula-
tor for noninterferometric subtraction. (a) idealized circuit with a constant current
source, (b) an optical realization of the constant current source.
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Noninterferometric optical subtraction using a MQW modulator can be best
understood by first considering the optical absorption of the device, which can be

described by hi'
A = -. S, (3.5),77e

where 77 is the internal quantum efficiency, h is Planck's constant, v is the optical
frequency, e is the electron charge, and S is the responsivity. The absorbed power
is P, = P .," A, where P,, is the incident optical power. The photocurrent is then
Ip = S. Pi,,. At any equilibrium state, I, = Ip and therefore

hvP., = - .Ic. (3.6)

77e

By controlling the bias current I, the optical power absorbed by the modulator can

be linearly controlled and the resulting reflected power Pf can be described by the
subtraction relation

Pef A,,c- P.,. (3.7)

It should be noted that since Equation (3.7) is the result of optical absorption, P,.,!
is necessarily non-negative. Equations (3.6) and (3.7) are the fundamental equations
describing the operation of noninterferometric optical subtraction. In order to lin-

early control the bias current, a constant current source is required. One method of
implementing a constant current source which fits the framework of optical process-
ing is shown in Figure 3.7(b). Light falling on the photodiode generates a constant

current which is directly proportional to the control light power. An advantage
of this constant current structure is that both the modulator and photodiode can
be constructed from the same GaAs material and can therefore be monolithically
integrated into the same structure providing both high efficiency and speed. The

specific application of noninterferometric optical subtraction differs from that of
self-linearized modulation and optical level shifting [43 in that both the electronic

current Ic(t) and the incident optical signal P=(t) are explicitly time-varying sig-

nals.
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3.1.3 Switching Speed and Energy Requirements

In order to make quantitative comparisons between our optical oversampled A/D

converter and other converters, the speed and power requirements of the constituent

devices must be known. In one realization of the optical oversampled A/D converter,

the fundamental building block is the multiple quantum well modulator. Here we

analytically present the fundamental relationships between energy and speed for the

symmetric MQW modulator as used for one-bit optical quantization and the single

MQW modulator as used for noninterferometic optical subtraction.

One-bit Optical Quantization

Considering Figure 3.4, we can begin with a first-order approximation to the speed

by modeling the individual MQW modulators as parallel plate capacitors and com-

puting the time-constant of the circuit. Writing an equation for the circuit current

at a point between the two modulators
PInciSMQwt (V) - Piw2SMQw2(Vo - V) + CMQW- dV-- CMQW d(V-V) = 0, (3.8)

CM dt- MW dt

where SMQw,, i = 1, 2 are the responsivities, and CMQW,,i = 1, 2 are the capaci-

tances of the individual MQW modulators, respectively. Next, assume that the two

modulators are identical in construction and therefore CMQW, = CMQWa = C and

SMQWI (V) = SMQw 2(V - V) -, where 3 is the average responsivity assumed to

be a constant. If we next assume that the time-rate of change of V is equal to V

divided by the differential time element At, then

dV V, (3.9)-- = E, 3.9

and Equation (3.8) becomes

Pi,3 - Pnc + CT - = 0 (3.10)

At
where CT = C/2 represents the total series capacitance of the circuit. From these

approximations, the total switching time of this symmetric modulator can be ex-

pressed as

t2 PCTV
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Equation (3.11) identifies the device characteristics which fundamentally limit the

speed of a symmetric MQW modulator. Both the average responsivity 3 and the

capacitance CT are fixed values, determined by device construction, and therefore

can only be changed through scaling and improved manufacturing techniques. In

order to reduce the switching time At, the difference between the two input optical

power levels Pj,,, and P,,,2 must be increased. However, in order to substantially

reduce the switching time, a large power difference is required which changes the

fundamental operation of the device from optical bistability to optical switching.

The only alternative is to increase the power level of both Pi,, and P,, such that

the difference is in units of milliwatts or watts instead of microwatts. Therefore,

there is a fundamental trade-off between incident optical power and switching speed

of these multiple quantum well devices.

It should be noted that this method of first-order approximation of the switching

speed has demonstrated good agreement with experimental results. In [51], 33 psec

switching time of an S-SEED was demonstrated with an optical switching energy

of approximately 6 pJ. This switching energy is currently a factor of 10 higher

than that of an electronic device with similar functionality. As manufacturing and

scaling techniques improve, we expect MQW switching energies to also improve and

become competitive with those of electronic bistable devices.

Noninterferometric Optical Subtraction

Figure 3.7(a) shows the configuration of a reflection-type MQW modulator with a

Fabry-Perot cavity used to implement noninterferometric optical subtraction. Fig-

ure 3.7(b) shows an optical implementation of the constant current source using a

photodetector and voltage source.

If we again begin by modeling both the MQW modulator and the photodetector

as parallel plate capacitors, we can write an equation for the circuit current at a

point between the modulator and the diode which is identical to Equation (3.8). If

we assume that the two devices are identical in construction, CD = CMQw E C and

SD(V) = SMQW(Vo - V) = , then the response time for noninterferometric optical

subtraction is also given by Equation (3.11).
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The energy requirements and operating speed of optical quantization and non-

interferometric subtraction using MQW modulators, therefore, are effectively the

same. As a result, no delay devices are required in order to satisfy timing require-

ments in the implementation of the optical modulator.

3.1.4 Bistability and Noninterferometric Subtraction in a

Common Oversampled Modulator

As mentioned earlier, the implementation of the optical oversampled modulator re-

quires the operation of optical thresholding and subtraction. In the next section,
we will present one realization of the interferometric modulator using MQW mod-

ulators which requires only the operation of bistability for the one-bit quantization
process. Optical subtraction is accomplished using beamsplitters (combiners) and

interferometric techniques. The noninterferometric realization of the optical modu-

lator, however, requires both bistable and noninterferometric subtraction operations

in the same modulator architecture.

From previous discussions on the theory of MQW modulators and Figure 3.3,

it is clear that the functions of bistability and noninterferometric subtraction each
require a different operating wavelength. In order to satisfy this dual wavelength

requirement in a common modulator, we can use one of the following techniques.

The entire optical oversampled modulator can be operated at a single wavelength

and use a higher applied voltage on the bistable MQW modulator. This technique

extends the range of wavelengths over which the MQW device is bistable [43]. Since

the operating wavelength of a MQW modulator is determined by its material char-

acteristics, another solution is to fabricate the stable MQW modulators used for

subtraction with slightly different width quantum wells compared to the bistable

MQW modulators used for thresholding, and again operate the modulator at a

single wavelength. The amount of the two different semiconductor materials used

in the construction of the MQW device is also a factor which determines the op-

erating wavelength. For example, in a MQW modulator fabricated using GaAs

and AlGaAs, the amount of Al compared to GaAs is a parameter that effects the
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wavelength of operation and therefore can be used for system level considerations.

These techniques can change the MQW operating wavelength over the range of

wavelengths that the particular material supports. Different semiconductor materi-

als provide operation over a wide range of wavelengths. For example, GaAs/AlGaAs

modulators operate over 0.75 - 0.9 Asm, strained or psuedomorphic InGaAs on GaAs

modulators operate over 0.9 - 1.06 Am, and InGaAs/InAlAs on InP devices operate

over the range 1.3 - 1.55 Am.

3.2 Optical Oversampled Modulators

In this section, we describe two different approaches to the implementation of the

optical oversampled modulator which are based on MQW devices. We charac-

terize the two architectures as interferometric and noninterferometric. Since both

realizations rely on the shift of the exciton peaks in a MQW modulator to cause

a change in the optical absorption, they both use highly monochromatic sources.

They differ in the way optical subtraction is accomplished. The interferometric

modulator processes complex amplitude optical signals and uses classical interfer-

ometric techniques to accomplish subtraction. The noninterferometric modulator

processes non-negative optical signals and uses the noninterferometric optical sub-

traction technique described in Section 3.1.2.

3.2.1 The Interferometric Modulator

The interferometric optical error diffusion modulator is the simplest of the optical

modulator architectures. Figure 3.8 shows the first-order modulator which is based

on the architecture of Figure 2.5 with H(z) = 1. The modulator structure shown in

Figure 3.8 uses transmissive MQW modulators for the optical quantization function.

The nonlinear difference equation which describes the operation of this modulator

was given previously as Equation (2.8). Here the quantities within the modulator

are optical signals represented as complex field amplitudes. In operation, beam-

splitters (combiners) BSI, BS3 , and BS5 act as subtraction nodes provided that
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Figure 3.8: First-order interferometric error diffusion modulator.

the pathlengths e1, 3, and f2 are all odd multiples of half-wavelengths, respectively.

The coherent reference, lens, and slit arrangement provide for interferometric phase

detection (see Appendix B for details), which is necessary for zero-threshold de-

tection in the binary quantizer, implemented here by a symmetric self electrooptic

effect device (S-SEED) [491. The two slits in the phase detector are positioned to

select the 0 and 7r maxima of the interference pattern. The S-SEED provides the bi-
nary quantization function as well as the optical gain necessary to overcome system

losses. The wavelength (photon energy) is selected such that dS/dV < 0 and the

operating point is unstable, thereby providing bistability. The threshold is set by

the external voltage V. and the ratio of the two input power levels, P .. and P,,

where F - ftt+TA j(t)dt, i = 1,2; A1 is the optical pulse amplitude and f,(t)

defines the pulse shape. The binary quantizer levels are q(u.) E {-A/2, +A/2},

the optical threshold is ut, = 0, and A = 2b. If pathlength £3 is an odd multiple of

half-wavelengths, then the output from beamsplitter BS4 is +A/2 if P' > P,

and -A/2 if P., < Pm. The rest of the modulator operation follows directly as
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described in Chapter 2.
This first-order interferometric modulator can be extended to higher-order us-

ing either the cascade approach of Figure 2.10 or the multi-loop architecture of

Figure 2.9. By simply replacing mirror M3 with a beamsplitter and adjusting the

S-SEED gain to overcome the additional loss, this first-order architecture can be

extended to a second-order cascade modulator. In order to implement a higher-
order multi-loop modulator, an interferometric transversal filter like that described

in [52] with weights described by Equation (2.13) is placed in the feedback path e1.
Interferometric optical processing architectures inherently suffer from an intol-

erance to optical pathlength changes and consequently phase variations. As men-

tioned earlier, one of the advantages of oversampled modulators is their tolerance

to circuit imperfections. The coarse one-bit quantizer absorbs many small circuit
imperfections including amplitude errors resulting from phase variations. For ex-

ample, assume that the S-SEED switching time is 33 psec [49]. At this speed, the
optical pathlengths required to satisfy modulator timing requirements in a material

such as GaAs can be shown to be on the order of 5 mm. Since these pathlengths
are the dominant physical dimension in the modulator, this modulator lends it-

self to monolithic integration. If the entire modulator is monolithically integrated
in GaAs (same as S-SEED material), the thermal tolerance can be shown to be

approximately ±10C, which is well within current temperature stabilization capa-
bilities. This, of course, assumes an initial temperature and phase calibration of the

modulator. As device technology improves, switching speeds will increase making

the optical pathlengths in this modulator decrease, thereby increasing the thermal

tolerance of the interferometric modulator.

3.2.2 The Noninterferometric Modulator

The block diagram for the first-order noninterferometric optical error diffusion mod-

ulator is shown in Figure 3.9. Offset biases 3A/2 and A/2 accommodate the fact

that all optical signals within the modulator are non-negative. Figure 3.10 shows the

optical implementation of Figure 3.9 using reflection-type MQW modulators. Here,

x is the unipolar modulator input generated by sampling x(t) and then biasing
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Figure 3.10: First-order nonmnterferometric error diffusion modulator.
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x, by 3A/2 to ensure x _> 0. In this configuration, two individual reflection

electroabsorption modulators (REAM) are used to implement noninterferometric

optical subtraction. These two REAMs are operated at a photon energy such that

dS/dV > 0, and the operating point is stable. In this mode, the optical absorption

of the REAM was previously shown to be directly proportional to the current in the

electronic bias circuit, described by Equation (3.6). In this case, the external cur-

rents I4, i = 1, 2 are generated by optical signals e,-, and u' through photodiodes

PD1 and PD 2 respectively, where PD1 and PD 2 are assumed to be integrated with

their respective MQW modulators to ensure maximum efficiency and speed. The

S-REAM provides binary quantization and optical gain, but now the threshold is

set by the external voltage and the ratio between u' and the optical reference. Here

the quantizer output levels are q'(un) E {A, 2A}, the quantizer threshold is utt = A,

and again A = 2b. Time sequential gain is used to shift the bias of q(un) by A/2,

which ensures non-negative signal operation within the modulator. Mathematically,

the quantizer error sequences are related by cn = e + A/2. The dual wavelength
requirement between the stable operation of the REAM and the bistable operation

of the S-REAM can be satisfied by operating at a single wavelength and using one

of the methods discussed in Section 3.1.4. The use of highly monochromatic signals

throughout the modulator ensures optimum REAM and S-REAM operation. The

rest of the modulator operation follows directly as described in Chapter 2. As in

the case of the interferometric modulator, this first-order architecture can also be

cascaded to a second-order modulator like that shown in Figure 2.10.

3.3 The Postprocessor

The function of the digital postprocessor is to remove the quantization noise which

was spectrally shaped by the modulator and to reduce the rate to the Nyquist

rate of the original sampled analog signal. This can be accomplished using either

electronic or optical techniques.
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3.3.1 Electronic Postprocessing

One method of accomplishing the postprocessing functions is to convert the opti-
cal signal to an electronic signal by means of a photodetector and then perform

the decimation filtering electronically. In this way, we could make use of existing

oversampled A/D converter decimation filters. Many of these decimation filters are

currently available in VLSI CMOS (silicon) technology, making integration with

the GaAs optical modulators possible. In this case, the converter sampling rate

would be determined by the maximum speed of the decimation filter and would

therefore probably not utilize the maximum potential of the optical modulator.

Faster decimation filters are possible using high-speed bipolar silicon technology or

faster materials such as GaAs, and would permit the full potential of the optical

modulator to be realized.

An electronic implementation of the postprocessor by no means lessens the ad-

vantages gained by the optical modulator. The optical implementation of the mod-

ulator provides high-speed operation for the analog modulator, while high-speed

electronics can easily implement the digital functions of the postprocessor. Also,
most current applications of A/D conversion require an electronic digital medium

as the output format for subsequent electronic digital signal processing.

3.3.2 Optical Postprocessing

Although the simplicity of the decimation filter makes it possible to implement

optically, the absence of all-optical digital circuitry which make use of b-bit optical

digital words makes it impractical at present. Optics could however be used in the

front-end of the postprocessor providing the transition from the high-sampling rate

to an intermediate rate, thereby allowing the use of more common electronics in

the balance of the postprocessor. Here we suggest one possible approach to the

implementation of all or part of the optical digital postprocessor.

Many of the current applications of MQW modulators are in the area of optical

digital logic. The basic building block of any digital logic application is the flip-

flop. In [49], an optically clocked reset-set (R-S) flip-flop was demonstrated using
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an S-SEED and was extended to a photonic ring counter which demonstrates the

cascadability to a multi-bit storage register. In this same reference, an S-SEED

was also used to demonstrate differential logic operations of AND, OR, NOR, and

NAND, which are the fundamental operations necessary for the realization of an

optical full-adder. Other methods of implementing digital optical logic using MQW

modulators and threshold logic are also currently being developed [53, 54].

As these and other optical digital logic techniques become more mature, all-

optical decimation filters will become realizable, thereby providing an optical digital

output alternative.

3.4 Summary

The approach to optical oversampled A/D conversion proposed in this chapter is

de-vice independent, requiring only optical thresholding, subtraction and digital logic

for implementation. There are many different methods by which to achieve these

functions optically. In this chapter, we have focused our attention on the use of

MQW modulators for the implementation of the optical oversampled A/D converter.

We described the operation of optical quantization and the added benefits derived

from using a symmetric configuration of the MQW modulator. The symmetric

modulator produces a transfer characteristics which closely approximates the ideal

hysteresis curve. It is insensitive to optical power supply fluctuations, provides

optical gain, and shows good input/output isolation.

Next, we presented the theory underlying noninterferometric optical subtraction

using a MQW modulator and showed how this static technique could be extended

to dynamic, time varying applications. We formalized several specific realizations

of the optical oversampled modulator based on the concepts of optical quantization

and subtraction using MQW modulators. Finally, we proposed both an electronic

and an optical implementation of the digital postprocessor. Using a photodetec-

tor, the one-bit digital optical output from the modulator can be converted to an

electronic signal and existing electronic techniques can be used to implement the

digital postprocessor. This would provide an electronic digital output word from
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the A/D converter to use in current electronic applications. As optical digital com-

puting becomes more mature, the digital postprocessor can be implemented using

the same MQW modulators which were used in the modulator. This final imple-

mentation provides the capability for all-optical A/D conversion, something that

was not possible with previous implementations of optical A/D converters.

There are several advantages associated with the use of MQW modulators.

MQW modulators are multi-functional devices, capable of implementing all of the

functions necessary to realize an optical oversampled A/D converter. They require

low operating energies, comparable with current electronic devices with similar func-

tionality. Switching speeds have been demonstrated to be 33 psec for a symmetric

modulator, and theoretical lower limits have been projected to be 1-2 psec. Two-

dimensional arrays of these modulators are also currently available, making image

processing applications a logical extension.

MQW modulators are by no means the panacea of optical processing devices.

The operation of the MQW modulator relies on the shift of the exciton absorption

peaks with applied electric field. These exciton peaks are narrow and therefore, for

optimum performance, require an accurate and stable laser wavelength. Also, since

the entire system is discrete-time, accurate timing synchronization is required.



Chapter 4

Performance Analysis

T HE PERFORMANCE ESTIMATES FOR THE OVERSAMPLED A/D CONVERTER

described in Chapter 2 were based on ideal components and therefore rep-

resent an upper bound on achievable performance. Nonidealities such as

arithmetic errors in the subtraction implementation, non-white quantization noise,

and stage-to-stage matching elrors all contribute to converter errors which result in

sub-optimum performance of the oversampled A/D converter.

In this chapter, we examine sources of error in the oversampled error diffusion

modulator which could reduce the performance estimates previously established for

the oversampled A/D converter. We begin by examining the robustness of the

modulator to linear errors associated with the subtraction operations. Next, the

quantization noise spectra are analyzed and contrasted with the typical white noise

assumption. Finally, we quantify errors and performance degradations associated

with stage-to-stage matching tolerances in the two-stage cascade architecture.

4.1 Linear Arithmetic Errors

One of the benefits of an oversampled modulator often cited in the literature is its

robustness against circuit imperfections. In this section, we quantify this statement.

Figure 4.1 shows the model of a first-order error diffusion modulator with linear

53
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x~nT) n+) q(nr)
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Figure 4.1: First-order error diffusion modulator error model.

errors A,, and A,. These errors represent gain errors associated with the subtraction

operations in the modulator.

We begin by assuming a model for the quantizer non-linearity in the form of a

linear gain plus an additive noise source,

q(un) = Glu, + e,. (4.1)

If the operation of the feedback loop is assumed to force the effective loop gain to

unity [55], then the quantizer output q(u,) is described by

q(u,) = -- + e.- (4.2)

From Figure 4.1, the input to the memoryless uniform binary quantizer is
I

Un = AUX, - AUAz-16n (4.3)

and therefore the output from the first-order error diffusion modulator is
A~.)= z. - + ,z-l , =.

q(Un) A A + 6- =-'- + (1 - z-1 )e.. (4.4)
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The first term in Equation (4.4) represents a scaled version of the sampled analog

input signal, where the scaling can be considered a gain mismatch. The absence

of A,, is a direct consequence of the unity gain assumption made at the beginning

of this analysis. The second term in Equation (4.4) represents the first-order noise

shaping expected from this first-order modulator.

The robustness of the oversampled modulator to these linear errors can be best

understood in terms of gain errors. The linear errors introduced in this analysis

do not contribute to the overall quantization noise nor do they effect the noise

shaping function of the modulator. As long as the gain error is independent of

the input signal amplitude, no distortion occurs and the error can be accounted

for and corrected in the postprocessor function. Therefore, in terms of SQNR,

which is a relative rather than absolute measure of performance, linear errors do

not adversely effect the overall modulator performance (assuming they are not time

varying errors).

4.2 Quantization Noise Spectra

4.2.1 Background

It is extremely important to characterize the quantization noise in an oversampled

modulator in terms of its statistical properties. These properties are used in the

evaluation of the modulator performance and ultimately determine the resolution of

the oversampled A/D converter. Previous results can be extended to new modulator

configurations such as the optical error diffusion modulator.

The interferometric optical modulator processes complex amplitude optical sig-

nals and can therefore be considered an optical dual of the electronic oversampled

modulator. As a result, the quantization noise characteristics can be shown to be

identical to those of its electronic counterpart. We therefore refer the interested

reader to the classic papers on oversampled EA quantization noise spectra by Gray

et al. [56, 57, 58, 59, 26].

The noninterferometric optical modulator, however, is much more interesting
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and is therefore the focus of this theoretical noise analysis. Unlike the interferomet-
ric optical modulator, the noninterferometric modulator operates only on optical
intensities, and does not process phase information. Therefore all signals within the

modulator are necessarily non-negative.

4.2.2 Methodology

There are several different approaches to the characterization of the quantization
noise in an oversampled modulator. The most popular approach is to model the

quantizer as an additive noise source where the noise is assumed to be uniformly
distributed, white and uncorrelated with the input. With these assumptions the
nonlinear system is linearized thereby allowing analysis with linear transform tech-

niques. Another approach uses the describing function method from control theory,

in which the quantizer non-linearity is modeled as a gain plus an additive noise

source. In this case, the gain is matched to the transfer characteristic of the first
harmonic of the input, which is a single sinusoid. The noise is still assumed to be

uniformly distributed, white and uncorrelated, but now the variance is matched to

that of the system by minimizing the mean square error [60, 61]. Both of these
techniques approximate the operation of the modulator by linearizing a highly non-
linear system. Recently, Gray derived exact analytic expressions for the spectral

characteristics of the quantization noise in oversampled EA modulators without

resorting to linearizing assumptions. By restricting the quantizer operation to be
within the no-overload region and recognizing the periodicity of the quantization

error, Fourier series techniques were used to derive closed form solutions to the
nonlinear difference equations.

4.2.3 Noninterferometric Noise Spectra

Figure 4.2 shows the equivalent block diagram of the first-order optical noninterfer-

ometric modulator. We describe the operation of this modulator by the difference
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Figure 4.2: Block diagram of a first-order noninterferometric error diffusion modu-
lator.

equations

vo; n=O (4.5)
x- e1 + = , - (v,,_) + u,_1 + ; n=1, 2,...

As in earlier analyses, xn E [-b, +b); n = 1, 2,... is the discrete-time input formed

by oversampling the analog input signal x(t), and [a, b) = {x : a < x < b} represents

the half-open interval. x' is the non-negative input to the modulator generated by

adding a bias of 3A/2 to the input thereby ensuring en 2 0. vn is the quantizer

input, u and subsequently v0 are the quantizer input initial conditions and q'(vn)

is the memoryless uniform binary quantizer defined by

3A2A if V,>V Vth = 2

q'(Vn) = (4.6)

A if V < Vth= 2

where A is the quantizer bin width and vth is the quantizer threshold. We will

assume for convenience that u' = 0, which implies v0 = A/2. In the optical ar-

chitecture, this amounts to resetting the quantizer at the end of each bit period.

Mathematically, this assumption has no effect on the asymptotic results but greatly

simplifies the algebra.
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We define the quantizer error sequence as

A. n=0

fn - (4.7)

q'(vn) - vn = x',, - v,+1 ; n=1,2, ...

where the definition of e0 follows from vo and q'(vn) and the second equality from

Equation (4.5).

Before beginning the noise analysis, we must establish the relationship between

A and b, so that A can be chosen to ensure the quantizer does not overload provided

X, E [-b, +b); n = 1, 2,.... We use mathematical induction to find this relationship.

If eo = A/2 and x' E [-b + 3A/2, b + 3A/2), then to ensure A/2 < v, _5 5A/2 we

must have that
A < X/ - A <5_ (4.8)

and therefore
b <-. (4.9)

2
We now show that this is a sufficient condition to ensure that the quantizer does

not overload. We have already proven this for n = 1, so we proceed by induction by

first assuming that it is true for n = 1, 2,..., k - 1. By definition of no overload, if

Vk-1 = X_- I -2 + A/2 is within the no overload region A/2 < v- 1 _< 5A/2 then

le<-1 1 A/2. Therefore we need only prove that it is not possible for either vk- 1 >

5A/2 or Vk-1 < A/2. It is easy to show that if 1e-1 :5 A/2, then 0 < 4-I :- A.

With this property and the range of xn we have that

S2_+ < b+ 2A (4.10)

and using Equation (4.9) that

A% A 5A%< = -6k-_I + A < -A (4.11)

proving that the quantizer does not overload for all n k I. The upper bound of

Equation (4.9) is chosen for the quantizer bin width A (A = 2b), consistent with

the most common choice for oversampled quantizer output levels and providing the

full extremes of the input as the possible quantizer outputs.
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Now that we have proven that the quantizer does not overload, we proceed with

the statistical characterization of the quantization noise. Following Gray's approach,

we first recast the difference equations in an alternative form that permits us to solve

the equations and directly evaluate limiting sample averages. Toward this end, we

consider the normalized and shifted error sequence

= 2 C" " - X' + 2  -; n=1, 2,... (4.12)

The following relations summarize the sequences of interest within the nonin-

terferometric modulator and how each can be derived from ,,:
II

En 1 Xn I Vn+ I
(n 2 (4.13)

- , (4.14)
q' (,1) _V,- Vn+1_ . 3 = +_ (4.15)

A A A ++ A

With the exception of an additional delay incurred by the biased input, these

equations represent the equivalent of those derived by Gray for the single-loop EA

modulator [581. Therefore, the quantization noise in the first-order noninterferomet-

ric optical modulator can be expected to have the same statistical characteristics

as those of the single-loop EA modulator. For completeness, we summarize the

quantization noise characteristics for both dc and sinusoidal input cases as well as

one- and two-stage cascaded modulators below. The complete derivation of the

following quantization noise characteristics can be found in [57, 58, 261.

We define the time average mean of the normalized quantizer error sequence as

1 N

P1} (n -UM F, n, (4.16)

and the time average variance or second moment as

i m N n .(4.17)
N0Nn=1
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We can show for a first-order modulator with a dc input, x,, = x for all n, where

-b <_ x,, < b is an irrational number, the time-average mean of the quantizer error

sequence is

E{(nj = 0 (4.18)

and the time-average variance is
1

( =2} - 12 (4.19)

Therefore, the normalized binary quantizer error sequence has mean and variance

identical to those of a uniformly distributed random variable on the same interval

of [-1/2,+1/2].
The power spectrum of this quantizer error sequence is discrete with amplitudes

given by

S,(fn) = { 0 (4.20)n 0(2);n#O

located at frequencies
A n#0 (4.21)
2b

where 0 < < r > < 1 is the fractional part of r (r mod 1). The cross correlation

between the input and the normalized quantizer error is

EIX4} = XnE{(} = 0 (4.22)

and therefore the input and the binary quantizer noise are uncorrelated.

For completeness, we also include the expression for the power spectrum of the

quantizer output sequence which is also discrete, with amplitudes given by

S1¢(f )= { ( n)' ;  n o 0 (4.23)

located at frequencies given by Equation (4.21). Here 3 = 1/2 + x'/2b.

For the first-ordpr error diffusion modulator driven by a sinusoidal input (zx =

acos(nwo), lal :_ b) and the special case of a = b, the time-average mean is

P{(n} =0 (4.24)
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and in the general case of a # b and for large oversampling ratios

;Z{tm 0. (4.25)

The time-average variance is

1001

12+ -2 _ (-1)'Jo(47r1a) (4.26)

-where a

2Asin" (4.27)

Equation (4.26) is approximately 1/12 when a is large. The power spectrum again

consists of discrete components, but now with amplitude

2' n=O

(/ J(, o, -1" _.2_S(fn) = E(o 2-1 (-1) ; n even (4.28)

. j'(wrJ)(_1)1)2 odd

located at frequencies
(- - ( ) neven

fn =(4.29)

( .2a), n odd

In Equation (4.28), J,, is a Bessel function of the first kind, with order n. The

input and the binary quantizer error in this case, however, are not asymptotically

uncorrelated as in the dc input case.

In the case of a second-order modulator, an irrational dc input produces quan-

tization noise that has the same marginal and joint moments as a uniform white

process. If the input signal is instead a sinusoid, the resulting quantization noise is

not white but becomes asymptotically uncorrelated as the oversampling ratio grows.

For a sinusoidal input, a third-order modulator is required to produce uniform white

quantization noise.
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Observations:

From these results, we can now characterize the quantization noise in the non-

interferometric optical modulator.

(1) The quantization noise in the first-order error diffusion modulator will be

non-white with discrete spectral components for both dc and sinusoidal inputs.

(2) The location of the discrete spectral peaks is directly proportional to the

input signal amplitude.

(3) For a second-order modulator, the quantization noise will have white noise

characteristics for a dc input and non-white characteristics for a sinusoidal input.

We anticipate the optical modulator will be used in an oversampled A/D con-

verter with a large oversampling ratio for which the input can be approximated as

a slowly varying signal, i.e. a dc input. Therefore, a second-order modulator is

necessary to achieve the desired white quantization noise characteristics.

Using a mixed digital and analog simulation program called MIDAS [62], we

simulated the operation of the first-order noninterferometric modulator shown in

Figure 4.2 and the second-order noninterferometric cascade modulator shown in

Figure 4.3. Figure 4.4 shows the quantization noise spectrum of the quantizer in the

first-order noninterferometric optical modulator. In this case the oversampling ratio,

M = fs/fN where fs is the sampling frequency and fN is the Nyquist frequency,

was 256, 4096 data points were computed, and the dc input was irrational; x = 1/7r.

The spectrum of the quantization noise is clearly not white, but contains discrete

spectral peaks as predicted by this analysis. Figure 4.5 shows the quantization noise

spectrum for the same modulator but with a different irrational dc input value; 1/2e.

As predicted by Equation (4.21), the location of the spectral peaks changes showing

the proportionality to the input amplitude.

Figure 4.6 shows the quantization noise spectrum of the second-stage quan-

tizer in the second-order cascade modulator using the same parameters as used in

Figure 4.4. This quantization noise spectrum is white and consistent with the the-

oretical predictions of the quantization noise spectrum of a second-order modulator

with an irrational dc input.
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Figure 4.4: First-stage quantizer noise spectrum; x, = 1/7r.
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Figure 4.5: First-stage quantizer noise spectrum; x,~ = 1/2e.
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Figure 4.6: Second-stage quantizer noise spectrum; ,, 1/ir.
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4.3 Cascade Error Tolerances

Multi-loop oversampled modulators provide improved amplitude resolution directly

proportional to the order N of the modulator and the Nth-power of the oversampling

ratio fs/fN. For N > 2, these modulator architectures suffer from instability

resulting from limit cycles. One method of achieving higher-order noise shaping

without stabilization problems is to use a cascade of single-loop modulators, often

referred to as a cascade or multi-stage modulator [30]. This type of architecture

can be shown to be no-overload stable, but generally requires strict stage-to-stage

matching tolerances. In the following analysis, we model gain errors and errors

associated with the subtraction nodes in a second-order cascade error diffusion

modulator and analytically describe the impact on the noise shaping characteristics

of the modulator and the overall performance of the oversampled A/D converter.

4.3.1 Ideal Noise Canceling

Consider the two-stage error diffusion coding architecture shown in Figure 4.7. The

filter transfer functions Hj(z) and H2(z) comprise a linear combinatorial network
which is used to cancel residual quantization noise from the first-stage modulator.

In the ideal case, the filter transfer characteristics which achieve this result are

Hi(z) = z-1

H 2(z) = -(1 - z-1 ), (4.30)

and Figure 4.7 can be equivalently represented as shown in Figure 4.8. In order

to quantify the noise canceling performance, we again model the quantizer non-

linearity as a linear gain plus an additive noise source

ql(ul) = Glul + el

q2(U2) = G 2U2 + 62  (4.31)

and assume that the feedback loop forces the effective loop gain to unity. From

Figure 4.8, the input to each individual memoryless uniform binary quantizer is
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Figure 4.7: Ideal two-stage error diffusion modulator.
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Figure 4.8: Ideal two-stage error diffusion modulator.
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U1 X 21 - Z-161

U2 X2 - z-IE2  (4.32)

and therefore the output from the two first-order modulators can be described as

ql(ul) = xi - z-1c, + E, = x, + (1-z-')cl (4.33)

and

q2 (u2) = X2 - Z-162 + e2 = x 2 + (1 - z 1)62. (4.34)

Equations (4.33) and (4.34) clearly show the first-order noise shaping characteristics

expected of both stages. We also know from Figure 4.8 that the input to the second-

stage modulator is

X2 = z-1Ej. (4.35)

The modulator output y,, can be represented as a linear combination of the output

from the two first-order modulators as

y. = [ql(ul) + q2 (u2)]z- ' - q2(u2). (4.36)

Substitution of Equations (4.33), (4.34), and (4.35) into Equation (4.36) leads to

the two-stage modulator output

y, = 1z- (1 - z-) 2e . (4.37)

Equation (4.37) contains no first-stage quantizer noise terms which indicates that

the noise canceling network has completely removed all of the first-stage quan-

tization noise, el. The only remaining quantization noise present in the output is

from the second-stage quantizer and is shaped by the second-order filtering function

(1 - z-1)2 , as desired.
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4.3.2 Non-Ideal Noise Canceling

In this section we introduce non-idealities in the two-stage cascade modulator. Fig-

ure 4.9 shows the two-stage error diffusion modulator with associated error contri-

butions. In this analysis, we will assume that

-(I--6 --), i--1,2. (4.38)

represent fractional errors in the subtraction nodes. In this case, the noise canceling
network is represented byce (z) and 1 2(z) where the ft indicates the gain mismatch

between the analog and digital coefficients. The flter transfer functions are now

f/1(z) ="z-
112(z) = 1 - z') (439)

(1 6), 1 2.(438
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where
- l __(4.40)

A'2

and

= i(1 -6

A'.= 'E,(1- 6A) i= 1,2. (4.41)

We begin with the same quantizer model assumptions as in Section 4.3.1 and

therefore the quantizer outputs ql(ul) and q2(u2) are given by Equation (4.31) but

now with unity effective loop gain, the quantizer output from each stage is described

by

ql(ul) = u--1- +61
Abi E

(4.42)

q2 (u2 ) U2  +e 2 .

From Figure 4.9, the input to each memoryless uniform binary quantizer is

U, = A ,X - AU,/ejZ-1

U2 = AX2 - AA2Z- 62 (4.43)

and therefore the quantizer output sequence from the two first-order modulators is

q1(U1) = - AA1 ,- 1 1 + el = 21- + (1 - z- 1)e1  (4.44)

and

q2 N Au2, 2 - + e2 =- + (1 - z- 1)e. (4.45)

Equations (4.44) and (4.45) again show the first-order noise shaping characteristics

of both stages. We know from Figure 4.9 that

X2 = A,,Oz-Li. (4.46)
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Representing the modulator output as a linear combination of the output from the

two first-order modulators,

y. = I(z)q(uj) + H 2(z)q(u 2). (4.47)

Substitution of Equations (4.38), (4.44), (4.45), and (4.46) into Equation (4.47)

leads to the two-stage modulator output

z-1  1 1Yn X1 + 6-T(1 - Z) ei - - z-1 )2
2, (4.48)

where

&T ; b&., + bA.2 + 6A (4.49)

is the cumulative matching error and the approximation results from neglecting

higher order terms.

The first term in Equation (4.48) represents a scaled and delayed version of
the input signal xi. The second term represents a scaled version of the first-stage

quantization error which was not fully canceled by the noise canceling network as
a result of stage-to-stage matching errors. The final term is a scaled version of the
second-stage quantizer noise which is shaped by a second-order filter response.

Observations:

(1) If there is no cumulative matching error (6,T = 0), the first-stage quantizer

noise is completely canceled, and only the quantization noise from the second-stage

appears at the output after undergoing second-order noise shaping.
(2) If the matching errors are not zero, the first-stage quantization noise is not

completely canceled. However, because Equation (4.48) depends on the sum of

errors and not the absolute error, the errors can offset each other.

(3) Neither A., nor A,, appear in the output of the overall modulator. This is

a direct result of assuming that the feedback loop forces the loop gain to unity.
In order to determine the impact of these errors on the signal-to-quantization-

noise ratio (SQNR), first assume the input x, is a sinusoid with peak-to-peak am-

plitude 2Az,. If the error terms in the modulator are assumed to be random and

uncorrelated with each other and the input, then it follows from Equations (4.47)
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Figure 4.10: Loss in SQNR as a function of cumulative matching error b, and
oversampling ratio M.

and (2.17) with N = 2 that the SQNR as a function of matching errors is approxi-

mately

SQNR(6A) (, [ + 17r4](4.50)SQN(6r )  A ,r 18Mi/3 02 30M5

where M is the oversampling ratio fs/fN.

If we define ASQNR as the fractional reduction in the SQNR due to matching

errors, then
SQNR(O) 52 (4.51)Asq]VI-- SQN(,) -;12 5 -. 6,. 4.51

Therefore, the reduction in SQNR is proportional to the square of the oversampling

ratio and the matching error. The loss in SQNR as a function of 6., and the

oversampling ratio M is shown in Figure 4.10. In this case, 43 is assumed to be

unity. This figure clearly shows the trade-off between matching tolerance accuracy

and oversampling ratio. For an oversampling ratio of M = 64, ±5% cumulative

matching error results in a loss in SQNR of 4.2 dB while if M = 128, a ±2.5%

reduction in the cumulative matching error is required to maintain the same loss in



CHAPTER 4. PERFORMANCE ANALYSIS 72

5

.. .... . . '. ... ........................ * .. .. ,4. /
..... ........... ... .

.......... ...........I = 0.4

0 :.... ....... ..... : ........ . .. ........... .......... ...........

0. -0.05 0 0.05 0.1

Cumulative Matching Error &

Figure 4.11: Loss in SQNR as a function of cumulative matching error 6,T and
digital filter coefficient 4.

SQNR. Figure 4.11 shows the loss in SQNR as a function of 6,T and for the case

M = 64.

In order to verify these analytic results, we simulated the operation of the cas-

cade modulator under conditions of cumulative matching errors using the special

purpose simulator MIDAS [62], which has previously shown good agreement with

experiment. MIDAS is a functional simulator for mixed digital and analog sampled-

data systems which is well suited to the evaluation of the long data traces needed

to study the behavior of oversampled modulators.

To examine the consequences of the cumulative matching error on the perfor-

mance of the two-stage cascade oversampled modulator, a number of simulations

were performed in a Monte Carlo fashion using random values for the errors

baft , and 6p. The resulting loss in SQNR as a function of the cumulative matching

error bT is shown in Figure 4.12 for the case = 1 and M=64. Figure 4.12 shows

that the analytic model of Equation (4.51) agrees well with the simulation results

and also confirms the assertion that the loss in SQNR is dependent on the sum of
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Figure 4.12: Loss in SQNR as a function of bT where/9 = 1 and M=64.

the matching errors and not on the absolute error. In executing the simulation,

each error was selected from a zero-mean, uniformly distributed ensemble that was

constrained to satisfy 16,T !_ 0.1, where recall that 6T - ba + 652 + b6.

4.4 Summary

In this chapter, we modeled three types of errors in the oversampled modulator

and determined the impact each had on overall converter performance. Linear

arithmetic errors resulting from non-ideal subtraction operations result in a linear

scaling of the analog sampled input signal at the modulator output. This scaling or

gain mismatch can be accounted for and corrected in the postproccssor, as long as

the linear errors are signal independent and known a priori. These linear modulator

errors do not change the noise shaping characteristics of the modulator nor do they

introduce additional noise sources and therefore do not degrade the overall converter

SQNR performance.
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Discrete spectral tones, which result from non-white quantization noise can,

however, produce serious performance degradations depending on the particular

A/D converter application. The spectral characteristics of the quantization noise

were shown to be closely related to the order of the modulator and whether the

input is a dc or sinusoidal signal. In order to reduce the spectral tones, higher-order

modulators which whiten the quantization noise characteristics are required. In

order to ensure white quantization noise characteristics, a second-order modulator

is required for a dc input and a third-order modulator is required for a sinusoidal

input, respectively.

Finally, stage-to-stage cascade matching tolerances were investigated and found

to be a major influence on converter performance. For a two-stage cascade modu-

lator with an oversampling ratio of M = 128, we found that a cumulative matching

error of ±2.5% resulted in a degradation in the converter SQNR of 4 dB.



Chapter 5

Optical Modulator Demonstration

T HE DESIGN CONSIDERATIONS AND ANALYSES ADDRESSED IN CHAPTERS 3

and 4 have been applied to the implementation of a first-order noninter-

ferometric optical modulator. The fundamental optical device used in this

design is the reflection-type MQW modulator with a Fabry-Perot cavity. The ob-

jective of this demonstration is to verify theoretical concepts developed previously

and to show the feasibility of optical oversampled modulation. It must be empha-

sized that this demonstration is to show proof-of-concept operation only, and not

to demonstrate the full potential of an optical oversampled modulator.

In this chapter, we describe experimental demonstration of the theoretical con-

cepts developed earlier. Specifically, we demonstrate, for the first time, the opera-

tion of noninterferometric optical subtraction using a reflection-type MQW modu-

lator with a Fabry-Perot cavity and analyze the accuracy of this subtraction tech-

nique. We then demonstrate dynamic operation of a first-order optical error dif-

fusion modulator with a constant optical input. From this data, we compute the

accuracy of the quantizer output sample average and analyze sources of error in

the experimental modulator. Next, the experimental power spectral density of the

modulator output is compared with the analytic expression developed in Chapter

4. From the results of this experimental demonstration, we are then able to predict

operating characteristics and performance capabilities of the optical modulator and

optical oversampled A/D converter.

75
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Figure 5.1: Structure and configuration of the reflection electroabsorption modula-
tor for noninterferometric subtraction. (a) idealized circuit with a constant current
source, (b) an optical realization of the constant current source.

5.1 Noninterferometric Optical Subtraction

In this section, we present experimental results of noninterferometric optical sub-

traction using a MQW modulator. The modulator used was a normally-on reflection

electroabsorption modulator (REAM) with a Fabry-Perot cavity [63].

Figure 5.1 shows the structure of the modulator and the circuit configuration

used to implement noninterferometric optical subtraction. The modulator was fabri-

cated using molecular beam epitaxial growth techniqucs explained in [46]. Quantum

well layers are placed within the intrinsic region of a p-i-n diode structure to facili-

tate the application of an external electric field. A Fabry-Perot 6talon is created by

the p- and n-doped mirrors on the front and rear of the device, respectively. The

cavity is undoped with 19 X 50 t GaAs quantum wells and 75 A Alo.33Gao. 67As

barriers. The rear mirror is composed of 19.5 pairs of AlAs/Alo.xGa. 67As quarter-

wave layers with a calculated reflectivity of 98.8%. The front mirror is constructed

with two similar pairs yielding 50.3% reflectivity. The reflectivity was measured

using a white tungsten lamp and a 1/2 meter spectrometer. The reflectivity was
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Figure 5.2: Normalized reflectivity versus wavelength.

then normalized to that of freshly evaporated gold and multiplied by the absolute

reflectivity of gold to obtain the spectrum shown in Figure 5.2. At zero bias, the

Fabry-Perot resonance can be seen at 831.5 nm, the heavy hole exciton at 817.0 nm,

and the light hole exciton at 803.0 nm. As the bias voltage increases, the excitons

red shift and approach the Fabry-Perot resonance of the cavity. Higher absorption

yields lower reflectivity at the resonance wavelength. At 6.2 volts reverse bias, the

heavy hole exciton and the Fabry-Perot resonance coincide, corresponding to the

minimum reflectivity of the device. At this point, the reflectivity changes from 82%

to 12%, yielding a contrast ratio of 6.8 and a maximum reflectivity change of 70%.

Recall from Chapter 3 that this method of noninterferometric subtraction re-

quires negative feedback operation of the MQW modulator and a constant current

source as the electronic bias circuit. Under these conditions, the absorbed power of
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the modulator can be described by

P, =-1, (5.1)
rje

and the resulting reflected power Pr,! is described by the subtraction relation

P,-,r = PC - P.. (5.2)

The operation of the modulator with a constant bias current is fairly simple

to understand. The current I, from the constant current source acts to charge

the capacitance of the REAM diode, while the photocurrent 4p generated by the

REAM acts to discharge it. If IP < Ic, the voltage across the diode rises and since

dS/dV > 0, Ip also rises. If however Ip > Ic, the voltage across the diode falls which

in turn causes a decrease in I. Consequently, the equilibrium state corresponds to

a stable operating point at which p = I,.
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Figure 5.3: Reflected power versus control current. Regions I, II, and III represent
the three operating regions of the modulator.

Figures 5.3 and 5.4 show measured results using an experimental configuration

similar to that in Figure 5.1(a). A tunable Ti:sapphire laser and a constant cur-
rent source were used to test the device operation. The laser was tuned to the

Fabry-Perot mode of the device and focused onto the modulator using a single lens.

In Figure 5.3, the incident power was held constant and the bias current was var-

ied using the constant current source. Detailed analysis shows that each curve is

comprised of three segments, shown for the P,,,= 6.28 mW curve by two vertical

dashed lines. At low applied voltages, the field strength across the quantum wells is
insufficient to sweep all of the carriers out of the wells and therefore, the quantum

efficiency is less than unity, varying with applied voltage. This characteristic de-
fines the first segment (I) of each curve. When the field reaches sufficient strength
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to sweep out all of the carriers, corresponding to approximately 4 volts in this de-

vice, unity quantum efficiency is achieved and the second segment (If) which is

linear according to Equation (5.1) is achieved. The electric field required to achieve

unity quantum efficiency is approximately 160 kV/cm, which is not atypical for this

type of modulator [64]. The third segment (III) corresponds to conditions under

which the field continues to increase, the maximum absorption of the modulator

is reached, and the device eventually breaks down. From this discussion and the

theory of the QCSE, it becomes clear that the voltage required to achieve unity

quantum efficiency is a function of the quantum well barrier height and therefore

becomes a modulator design parameter. The experimental data was fit to a linear

equation using least-squares linear regression techniques. Over the range for which

the quantum efficiency was unity, the slope of each regression line corresponded

to -hv/e, as expected from Equation (5.1). The correlation coefficient for each

curve was 0.999, indicating nearly perfect linear regression. The insertion loss of

the modulator was computed to be 17 ± 1% which corresponds within experimental

error to the minimum absorption state of this device. The worst-case error, defined

as the ratio of the absolute value of the maximum deviation of the measured data

from that predicted by Equation (5.2) to the value predicted by Equation (5.2), was

less than 0.5% over the operating range of the device for which 77=1. By fitting a

linear equation to the entire operating range of the device, the worst-case error was

computed to be less than 2%.
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Figure 5.4: Reflected power versus input power as a function of constant bias cur-
rent.

Figure 5.4 shows experimental results for Pf versus Po for several different

values of bias current. Here the reflectivity response of gold was included only as a

reference. Each curve again consists of three linear segments. The lower segment

corresponds to the case in which the maximum absorption of the modulator is

reached, and insufficient photocurrent is generated to reach an equilibrium state.
In this case, the slope of the segment corresponds to the high absorption state of

the device, or a reflectivity of 18%. Ideally, the slope of this segment should be
12% reflectivity. The difference in slope occurs because the constant current source

could provide no further increase in voltage and results in less than the 6.2 volts

necessary for maximum modulator absorption. The upper segment corresponds to

conditions under which an equilibrium state is reached, I. = I,~ and Equation (5. 1)
is valid. The slope of this segment, although ideally 1, was measured to be 0.87

with deviations from unity being attributable to variations in quantum efficiency
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and loss from the back mirror resulting from changes in cavity absorption. Over this

segment, each curve was again fit to a linear equation with the resulting correlation

coefficients being 0.9999. There is a final segment, not shown in Figure 5.4, in which

the minimum absorption of the device is reached, no further increase in reflectivity

is possible, and again equilibrium is unattainable. Here the slope corresponds to the

minimum absorption of the device, or 82% reflectivity. From Figures 5.3 and 5.4 it

is clear that we can achieve noninterferometric optical subtraction with extremely

good linearity using this technique.

In the next section, this noninterferometric optical subtraction technique will

be used as the building block to implement the negative feedback architecture for

the first-order modulator. In this application, however, dynamic noninterferometric

subtraction will be required since both P, and I are explicit functions of time.
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Figure 5.5: Experimental setup for the first-order noninterferometric modulator
demonstration.

5.2 Experimental First-Order Modulator

The objective of this section is to demonstrate dynamic operation of the first-order

noninterferometric optical modulator and compare key operating characteristics to
those theoretically predicted in previous chapters. Since this is a proof-of-concept

demonstration and we have previously experimentally demonstrated the operation

of noninterferometric optical subtraction using a MQW modulator, onlye opf the

subtraction nodes in the modulator will be implemented optically. Also, as a result

of device availability, a photodetector and feedback electronic circuitry will be used
to generate the one-bit optical quantization.

The experimental setup for the proof-of-concept demonstration of the first-order

noninterferometric modulator is shown in Figure 5.5. In this configuration, P.' =_

P., P,.f = P4, the reflection modulator implements the noninterferometric optical

subtraction P. - Pe = P4,, electronic circuitry is used to implement the subtraction

Pq - R4 = P., and a photodetector and, electronic feedback circuitry generates the
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necessary thresholding function.

In the actual demonstration, tunable Ti:sapphire laser operating at the Fabry-

Perot mode of the modulator (A = 831.5 nm) was used as the optical source.

A variable neutral density filter provided the mechanism by which the constant
input optical power level was manually adjusted. A mechanical chopper, operated

between 300 Hz and 1 kHz, was used to sample the constant optical analog input.

The sampled analog optical signal was focused onto the reflection modulator which
implemented the first subtraction node in the modulator. A glass beamsplitter
with a reflectivity of approximately 8% was used to develop the feedback signal P4

from the reflected optical signal Pref for use in the second subtraction node. The
remainder of P 1,.! was focused onto the photodetector which, along with the feedback

electronic circuitry, performed the one-bit optical quantization. The signal Pe is an
electronic current signal which controls the absorption of the reflection modulator

and completes the feedback loop.

In this demonstration, the constant optical input was constrained to Pe E

[A, 2A) mW which corresponds to the no-overload range of the one-bit quantizer.
The electronic circuitry and photodetector were calibrated to produce quantizer

output states Pq E {A, 2A} mW with a quantizer step size of A = 1 mW and
optical threshold Ph = 3A/2 mW. The output of the quantizer, which is an elec-

tronic signal representing P, is then directed to the electronic subtraction and gain

circuitry which electronically implements the subtraction P4 - P4 = Pe. Here a

two-stage operational amplifier circuit is used to provide gain for the feedback signal

P, a differential amplifier implements the P4 - Pe subtraction, and an operational

amplifier is used as a voltage-to-current converter to produce Ic 0C P4.
The quantizer output data sequence was acquired using a digital storage oscil-

loscope. The time average of the quantizer output sequence is shown in Figure 5.6
for a constant optical biased input of Pe. = 1.743 mW. Figure 5.6 clearly shows

the same modulator operating characteristics predicted in Chapter 2, and shown
in Figure 2.7 with the exception of an offset. This offset, which equals 1.5 mW,

corresponds to the 3A/2 bias offset used to ensure non-negative signal operation

within the modulator.
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Figure 5.6: Sample average of the quantizer output sequence.

In order to get a quantitative estimate of the modulator performance, we define

the worst-case error as

a0n = zz{IThWPmI (5-3)

where Pg,, is the theoretically predicted value of the quantizer output power and/P

is the measured value. Over the entire operating range of the quantizer, we found

that an= < 2%. Most of this error was traced to amplifier noise and calibration

errors in the electronic subtraction and gain circuitry. The experimental error was

a result of linear errors in the subtraction operations and is therefore equivalent to

the gain mismatch error discussed in Section 4.2. Since this error is linear, it can

be accounted for in the modulator design and compensated in the postprocessor.

Another important characterization of modulator operation is the quantizer

noise spectrum. Using the data acquired from the modulator output, we com-

puted the power spectrum of the quantizer output sequence using the Fast Fourier

Transform and compared it to the analytic results of Equation (4.23) for the case

of an irrational dc input. The choice of an irrational dc input is justifiable since,

if the input is selected at random using a continuous probability distribution, then
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Figure 5.7: Power spectrum of the quantizer output sequence.

with probability one the resulting input will be an irrational number [571. Fig-

ure 5.7 shows the power spectral density for both the theoretical and experimental

first-order modulator quantizer output sequences for a constant unbiased analog

input of 0.243 mW. The experimental power spectrum clearly shows the discrete-

ness of the spectral tones which the theory predicts. Also, the difference between

the theoretical and experimental plots corresponds to an error of approximately

2%, which agrees with the worst-case error computed earlier. The quantizer output

power spectral density was computed for other constant optical input values and

confirmed that the frequency of the spectral tones does in fact change with changes

in the amplitude of the input as predicted by Equation (4.23).

From the results of this section, we can now make some general statements

regarding the optical oversampled modulator. First, it is possible to implement

dynamic noninterferometric optical subtraction with sufficient accuracy for use in
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an optical oversampled modulator. Next, the linear errors associated with the non-
interferometric optical subtraction result in gain mismatch errors in the modulator

output, as predicted by Equation (4.4). These errors were shown to be independent

of signal amplitude and can in principle be corrected in the digital postprocessor. As

a result, no additional noise sources or errors in the noise shaping function are intro-

duced by the optical implementation. The discrete power spectrum of the quantizer
output sequence confirms the behavior of the quantizer error sequence. From these
results, we are confident that a second-order optical modulator with a constant

input will have a quantization noise spectrum with statistical characteristics con-

sistent with a uniform white process. Finally, the experimental noninterferometric
realization proved to be robust against thermal and vibrational variations which

would typically render a free-space interferometric architecture unusable.

5.3 Summary

In this chapter, we experimentally demonstrated noninterferometric optical sub-

traction and dynamic operation of a first-order noninterferometric optical modula-

tor. Noninterferometric optical subtraction using a reflection-type MQW modulator

with a Fabry-Perot cavity was demonstrated for the first time and shown to be lin-

ear to within 0.5% of theoretical predictions, over the operating range for which the

modulator achieved unity quantum efficiency. This subtraction technique was then

used to implement the negative feedback architecture necessary for the first-order
noninterferometric optical modulator. The modulator operated at sampling fre-

quencies up to 1 kHz and demonstrated output sample average accuracy to within
2% of that predicted by theory. The experimental results of the first-order mod-

ulator operation also verified previous analytic predictions regarding the impact
of linear subtraction errors on the modulator output and the discreteness of the

quantization noise spectra.



Chapter 6

Multidimensional Extensions

NTIL NOW, WE HAVE ADDRESSED ONE-DIMENSIONAL (1-D) TEMPORAL

error diffusion coding as applied to oversampled A/D conversion. With

the optical implementation came the possibility of two-dimensional (2-D)

extensions using arrays of MQW modulators. In this chapter, we present multidi-

mensional extensions of the basic optical oversampled A/D converter architecture

developed previously and examine both 2-D temporal and 2-D spatial optical error

diffusion applications. We also investigate the possibility and benefits derived from

3-D optical error diffusion coding.

Figure 6.1 shows a generic multidimensional extension of the first-order optical

error diffusion coding architecture which uses MQW modulators as the fundamental

optical devices. Here, u and v represent two orthogonal sampled spatial dimensions

and n is the sampled time dimension. The input to the optical processor is a 2-D

image, where the information about each image pixel is contained in the optical

power P(u, v, n). The first array of devices (I) consists of transmissive-type MQW

modulators integrated with photodetectors to implement noninterferometric optical

subtraction. This array of devices performs the subtraction operation of the first

subtraction node in the temporal architectures described earlier. The second array

of devices (HI) consists of reflection-type symmetric-MQW modulators and imple-

ments the one-bit optical quantization function, pixel by pixel. The third array of

88
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Figure 6.1: Multidimensional extension of optical error diffusion coding.
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devices (III) is identical to the first, with the exception that reflection-type MQW

modulators are used instead. This array of devices implements the feedback sub-

traction function. The hologram is fixed according to the particular application and
implements the weights and interconnects required for the specific error diffusion

algorithm. It is this hologram that determines whether 2-D temporal, 2-D spatial,

or 3-D error diffusion coding is performed. Before proceeding, we note that the ar-
chitecture presented in Figure 6.1 fits the framework of a symmetric (Hopfield-type)
optical neural network [651. Next, we present with the analysis and application of

each of these cases.

6.1 Pixel-by-Pixel A/D Conversion

Optical oversampled pixel-by-pixel A/D conversion of a 2-D image is the most
direct extension of the 1-D temporal optical oversampled A/D conversion presented
previously. In this case, no spatial error diffusion is required of the hologram. In

order to describe the weighting and interconnect operation of the hologram, we
define new coordinate sets around the hologram. The input to the hologram is

described by the coordinates (U, V), the hologram pixel location by (u, v), and

the output of the hologram by (u, v). For all the applications considered here,

(U, V) = (u, v). The weighting and interconnect operation of the hologram can,

in general, be described by w(u, v; u, v, n). Here, the optical information at the

hologram coordinate (u,v) is weighted and interconnected to the coordinates (u,v).
As in previous analyses, n represents the sampled temporal dimension.

2-D pixel-lcr-pixel A/D conversion, which diffuses errors only in the temporal

dimension, can be described by (U, V) = (u, v) = (u, v) and w(u, v; u, v) = 1. The

hologram interconnect and weight definitions are important for this application in

the event that a reconfigurable hologram such as a computer generated hologram is
used. If the pixel-by-pixel A/D architecture is designed as a special purpose optical

processor, the hologram can be eliminated and the output from the third device
array P6(u, v, n) can be interconnected directly to the first device array.

The operation of this 2-D optical oversampled A/D converter follows from a
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direct extension of the 1-D temporal case presented in Chapter 3. The sam-

pled analog signal P.(u, v, n) is incident on the 2-D array of transmissive-MQW

modulators which perform the pixel-by-pixel noninterferometric optical subtraction

P.(u, v, n) - P(u, v, n) = P (u, v, n). BS1 directs a portion of Pu,(u, v, n) to the 2-D

array of reflective-MQW modulators which perform the noninterferometric optical

subtraction Pq(u, v, n) - P,(u, v, n) = P(u, v, n) and the remainder of P(u, v, n)

is incident on the quantizer array Q. A 2-D array of symmetric reflective modula-

tors constitutes the quantizer array Q. BS2 directs a portion of Pq(u, v, n) to the

2-D array of reflective-MQW modulators and the balance to the modulator output.

The output of the 2-D optical oversampled modulator corresponds to the output of

BS 2. Here, the temporal ciata sequence from each individual pixel represents the

high-rate, 1-bit, digital optical word which will be subsequently low pass filtered

and decimated by the digital postprocessor. The hologram performs no spatial er-

ror diffusion but simply optically interconnects each pixel of the second array of

reflection modulators to the corresponding pixel in the first array of transmissive

modulators according to a one-to-one mapping.

This first-order 2-D optical modulator architecture can be extended to higher-

order using techniques similar to those described in Chapter 2.
The usefulness and application of this 2-D extension is in the area of image

preprocessing. If the input analog image is time-varying, this 2-D optical imple-

mentation can provide the front-end A/D processor by producing a high resolution

pixel-by-pixel digital representation of the image. This 2-D digital representation

of the input image can then be used as the input for subsequent digital signal

processors or computers.

6.2 Digital Image Halftoning

Digital image halftoning is the process by which a gray scale image is reproduced

on a bilevel printer or display such as a cathode ray tube (CRT). There are several

different techniques by which digital image halftoning can be implemented [66, 67],

with error diffusion coding [22] providing the most accurate digital representation of
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the original image. Although error diffusion coding is desirable because it provides

the best binary representation of the gray scale image, it is also the most compu-

tationally intensive. In an electronic realization, the algorithm scans through the

image, line by line, and fir each pixel, a binary quantization decision is made based

on the intensity of the individual pixel and the weighted error from pixels in the

diffusion region. Since this algorithm scans the image in a raster fashion, the error

diffusion filter is necessarily causal and therefore can introduce undesirable visual

artifacts. Also, substantial storage and signal processing are required for this im-

plementation. By using a 2-D optical implementation of error diffusion coding, each

pixel quantization decision can be computed in parallel and therefore the optical fil-

ter need not be causal. Visual artifacts resulting from the causality of the diffusion

filter can the,-efore be eliminated. Also, the optical implementation should reduce

the computational requirements while decreasing the total convergence time of the

halftoning process.

If wp use the same coordinate definitions as in the pixel-by-pixel A/D conver-

sion case, the following constraints apply to the hologram for optical digital image

halftoning:

E w(u, v; u, v, n) = 1, (6.1)
(U,V)EN

and

w(u, v; u, v, n) = 0, (6.2)

where N defines the 2-D spatial region over which the error is to be diffused

/I(u)l + I(v)l2 < N. (6.3)

From these equations we can make some general comments about the hologram

weights and interconnects in the digital image halftoning configuration. First, no

temporal error diffusion occurs in the digital image halftoning error diffusion ar-

chitecture as demonstrated by Equation (6.1). Equation (6.2) ensures that the

hologram weights sum to one so that the exact value of the quantizer error is dif-

fused. The region of diffusion N identifies a 2-D region over which the error is
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to be diffused and is defined by the specific error diffusion filter and algorithm se-

lected. Equation (6.3) mathematically defines a circular template which bounds

this diffusion region.

The operation of the optical digital image halftoning architecture is similar to

that described in Section 6.1 with the exception of the hologram functionality.

Here, each pixel of the hologram assigns weights and interconnects according to the

specific filter diffusion algorithm.

In the digital image halftoning case, the output from BS2 constitutes the binary

digital representation of the input image. No digital postprocessing is required as

the human visual system performs the low pass filtering function when viewing the

output on a bilevel display.

The digital image halftoning optical oversampled A/D converter provides several

distinct advantages over electronic digital image halftoning. As a result of the 2-

D nature of the optical implementation, a non-causal error diffusion filter can be

implemented. The non-causal structure of the filter allows symmetric filters to be

implemented which can reduce visual artifacts such as Moir6 patterns from the

final halftone image. Also, since each individual pixel quantization decision and

the weighting and interconnect operations are performed in parallel, the speed of

convergence to the optimum halftone image should be faster. Similarly, decreased

convergence time suggests that an error diffusion filter with larger spatial dimensions

can be utilized thereby reducing the individual pixel error and improving overall

performance.

6.3 3-D Error Diffusion

By combining the techniques of temporal error diffusion and spatial error diffusion,

it is also possible to implement 3-D optical error diffusion coding with the archi-

tecture shown in Figure 6.1. This 3-D error diffusion can be implemented simply

by changing the functionality of the hologram. Here, the optical interconnections

over the region N are complete. Also, the digital postprocessor will be required

to perform both temporal and spatial low-pass filtering operations as the human
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visual system will not be the principal recipient of the digital output.

At this juncture, we do not know the usefulness or specific applications of this

3-D optical error diffusion system. This will be a topic of future research.

6.4 Summary

In this chapter, we have discussed multidimensional extensions of optical error diffu-

sion coding and focused primarily on two applications: pixel-by-pixel A/D conver-

sion and digital image halftoning. By simply extending the 1-D temporal architec-

tures presented in Chapters 2 and 3 to 2-D architectures, pixel-by-pixel oversampled

A/D conversion can be implemented. Pixel-by-pixel A/D conversion can be used for

real-time image processing applications where a continuous tone image first needs

to be A/D converted and then subsequently processed using digital signal process-

ing techniques. Digital image halftoning is the process by which a gray scale image

is digitized for reproduction on a bilevel printer or display. The implementation

of these two applications differs only in the functionality of the hologram which

assigns weights and interconnects for the error diffusion process. In pixel-by-pixel

oversampled A/D conversion, the hologram performs no spatial error diffusion but

simply connects the incoming optical signal coordinates to the same outgoing co-

ordinates with a weight of unity. In digital image halftoning, the hologram assigns

the input optical signal coordinates to several output coordinates defined by the

diffusion region N with weights according to the specific diffusion filter algorithm.

In this case, the output of the 2-D optical oversampled modulator constitutes the

final digital output since the human visual system performs the low pass filtering

function usually associated with the digital postprocessor. The concepts used for

pixel-by-pixel oversampled A/D conversion and digital image halftoning can also be

extended to implement a 3-D optical error diffusion architecture. In this case, the

hologram performs error diffusion in two spatial dimensions as well as the temporal

dimension.



Chapter 7

Conclusion

W HE IMPORTANCE OF A HIGH-SPEED A/D INTERFACE FOR USE WITH BOTH

electronic and optical applications cannot be overstated. In this research,
we have developed a new approach to optical A/D conversion based on

oversampling and error diffusion coding techniques which can extend the resolu-

tion and conversion rates beyond those currently possible with other electronic or

electrooptic A/D conversion techniques.
This new optical A/D conversion technique provides several advantages over

other optical and electronic approaches. First, this new technique is simple and

fundamentally device independent, requiring only optical quantizers, arithmetic

operators, and common optical components. As optically bistable devices and

sampling speeds become faster, the resolution and conversion rates of this opti-

cal converter can be expected to increase, as predicted in Chapter 2. The optical

oversampled A/D converter can be operated in conjunction with high-speed optical

sampling techniques which provide advantages in terms of decoupling of sampled

and sampling signal as well as improved sampling precision. Recently, mode-locked
semiconductor lasers have demonstrated 16 Gbps pulse rates with timing jitter less

than 1 psec [68]. For the specific realizations which incorporate MQW modula-

tors, these devices also provide some distinct advantages from which the optical

oversampled A/D converter can profit. MQW switching speeds as fast as 33psec
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have been demonstrated [51], and theoretical speeds have been projected to approx-

imately 1 - 5 psec (69]. MQW modulators require low operating energy compared

to previous optical devices with similar functionality. Also, because of the MQW

modulator's 'three-terminal' operation, the need for critical biasing is eliminated,

thereby providing an optical device with good input-output isolation characteris-

tics [701. The GaAs-based implementation is compatible with both diode lasers and

electronics and suggests the possibility of system integration. Finally, the avail-

ability of arrays of MQW modulators [711 makes this method of A/D conversion

particularly attractive for image processing applications.

There are several limitations associated with this new optical method of A/D

conversion. The operation of the MQW modulators rely on shifts of the exciton ab-

sorption peak with applied electric field. These exciton peaks are narrow and there-

fore, for optimum performance, require an accurate and stable laser wavelength.

Also, since the entire system is discrete-time, accurate timing synchronization is

required.

Based on current device specifications [51, 72] and the results of this research,

a two-stage optical oversampled A/D converter based on MQW devices should be

capable of operating at a 16 Gbps sampling rate and providing resolution of 8 bits

at a Nyquist conversion rate of 1 GHz. This performance assumes a cumulative

matching error of ± 2.5 % and therefore a loss in SQNR of 0.1 dB. Similarly, a

two-stage converter operating at a sampling rate of 20 Gbps can provide 16 bits

resolution at a conversion rate of 100 MHz. Here, the cumulative matching error

is still assumed to be ± 2.5 %, but now corresponds to a 7.2 dB loss in SQNR.

These performance estimates compare favorably with those of current electronic

and electrooptic A/D converters. Bell et aL have recently described a hybrid

electronic/electrooptic A/D converter, using demultiplexing techniques, which they

predict can achieve resolution on the order of 6 bits at 4 GHz (13]. Current electronic

technology supports approximately 8 bits resolution at 100 MHz for conventional

Nyquist rate flash converters [4] and 12 bits at 1.5 MHz for oversampled converters

[73].
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7.1 Contributions

As a result of this research, a number of new concepts have been presented.

* The optical oversampled A/D converter proposed in this dissertation is the

first optical converter of its type. It is the only optical A/D converter to date

which uses optical quantization and therefore provides the potential for all-

optical A/D conversion. All of the designs and analyses associated with this

approach are new.

* The architecture of the optical oversampled modulator differs from other elec-

tronic oversampled converters such as EA converters in that an error diffu-

sion coding architecture is used. As a result, the analyses of linear arithmetic

errors, quantization noise spectra, and cascade error tolerances, although ex-

tensions of those used for EA modulators, are also new.

* Until now, MQW modulators have been used almost exclusively for optical

interconnect and digital logic applications. As a result of this research, we

have demonstrated the usefulness of MQW modulators to analog information

processing applications.

• Previously, the concept of self-linearized modulation and optical level shifting

using MQW modulators had been proposed for only static applications. We

extended this concept to the application of noninterferometric optical sub-

traction in which both the incident optical light and the control current are

explicitly time-varying signals.

* We experimentally demonstrated noninterferometric optical subtraction us-

ing a reflection electroabsorption modulator with a Fabry-Perot cavity and

characterized the linearity and errors associated with this operation.

* Another novel use for dynamic noninterferometric optical subtraction which

was demonstrated, but not discussed in this dissertation, is laser power stabi-

lization [74].
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" We experimentally demonstrated proof-of-concept operation of the first-order

noninterferometric optical modulator using MQW modulators.

" We proposed the first multidimensional optical A/D converters for use in

image A/D conversion and digital image halftoning applications.

7.2 Future Work

In this research, we have proposed the concept of an optical oversampled A/D con-

verter and developed several methods by which to achieve its realization. We have

focused primarily on the oversampled optical modulator while recommending meth-
ods for the implementation of the digital postprocessor. During the course of this
research, we have identified several open issues which warrant further investigation.

One of the first logical extensions of this research is the experimental demon-

stration of a high-speed all-optical error diffusion modulator. In this research, we

demonstrated proof-of-concept operation of the noninterferometric optical modula-

tor only. Following the logical sequence of experimental progression, the next step
would be a free-space demonstration of higher-speed operation using smaller and

faster MQW devices. The ultimate goal is to realize a completely integrated optical

oversampled modulator which operates at sampling rates in excess of 15 GHz.
In Chapter 3, we suggested the use of MQW modulators as the fundamental

optical device for the implementation of the digital postprocessor. Recently, a sig-

nificant effort has been made to develop digital optical logic using MQW modulators

[53, 49, 75]. This basis for optical logic operations could be extended to the oper-

ations of full-adders and multi-bit storage registers, and used to build an optical

digital postprocessor.

The analyses presented in Chapter 4 implicitly assumed generic noise sources

which contributed to errors in the A/D conversion process. For a given optical

architecture, noise sources and sources of error specific to the optical devices need

to be quantified and compared to the errors used in these analyses.

The multidimensional extensions and applications discussed in Chapter 6 war-

rant further investigation. In the case of pixel-by-pixel A/D conversion, further
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analysis of error sources peculiar to the arraying of the devices is necessary. Issues

such as optical crosstalk, beam divergence, and cross coupling of the devices need

to be investigated. For the 2-D optical digital image halftoning, more analysis is
needed to quantify the amount of reduction in image artifacts resulting from the

use of a non-causal error diffusion filter. Also, improvements in the convergence

time resulting from fully-parallel operation need to be verified. The 3-D spatial and

temporal error diffusion extension of the optical architecture provides the capability

of 3-D error diffusion, something never before proposed.



Appendix A

Homomorphic Proof

I N THIS APPENDIX, WE ANALYTICALLY DEMONSTRATE THE HOMOMORPHIC

relationship between the error diffusion coding and classic EA modulation

architectures.

A.1 EA Modulator

Consider the ideal first order EA modulator shown in Figure A. 1. We can describe

the input to the quantizer as

un = xn.-1 - q(un-1) + Un-I. (A.1)

The uniform binary quantizer assigns the digital output level according to

+A if n> 0

q(un) = o (A.2)

o-~therwise

where A is the quantizer step size and un is the quantizer input. We define the

quantizer error as the difference between the output and input of the quantizer

6n q(u,) - u,,. (A.3)
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Integrator Quantizer
x(kT) + + u --F _ 1 Y

q(kT) ...

Figure A. 1: Ideal first order EA modulator.

Rearranging Equation (A. 1) using Equation (A.3) we have

q(u,n) = xn.-1 - - En-l. (A.4)

'gno quatxztaw error

If we assume the quantization noise is uniform and uncorrelated with the input,

we can develop the noise shaping function for the modulator. The noise shaping

function HN (z) of a EA modulator is the inverse of the transfer function H(z) in

the forward path of the modulator. For an N" -order modulator with N integrators

in the forward path, the noise shaping function is an N"h -order difference with the

following transfer function:

HN(z) = (1 - z- )N. (A.5)
=H(z)--

For N > 2, a multi-loop EA architecture is required to achieve the noise shaping

function described by Equation (A.5).

A.2 Error Diffusion Modulator

The recursive error diffusion modulator is shown in Figure A.2. If we assume

HN(Z) = 1, then the input to the quantizer is

un = xn - Es-i. (A.6)
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Quantizer

e(nT)

- H(z) .-- - -"

Figure A.2: Ideal Nth-order error diffusion modulator.

The quantizer output takes on the same states as defined in Equation (A.2) and

the error is now an explicit variable in the architecture

, = q(u,) - U. (A. 7)

From these equations is is easy to show that

q(u,) = xn - -n - Cn-1. (A.8)
signaL quantizatwn error

With the exception of the additional delay encountered by the signal in the EA

modulator, Equations (A.4) and (A.8) are identical.

If we again make the assumption of uniform and uncorrelated quantization noise,

we can develop the noise shaping function for the error diffusion modulator. Observe

that E(Z) = Q(z) - U(Z) = Q(z) - X(z) + HN(z)E(z)z -1 . The quantization error

sequence in = qn - Xn can be related to the quantizer error sequence = qn - un

through the transfer function

G(z) = E(z) = 1 - HN(z)z-1 (A.9)

E(z)

where t(z) and E(z) are the z -transforms of 4 and en, respectively. If HN(z) is a
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transversal filter with weights taken from the binomial coefficients

N  fori=1, 2,...,N (A.10)

then Equations (A.5) and (A.9) produce identical noise shaping characteristics for

a given N.



Appendix B

Interferometric Phase Detection

A S PART OF THE INTERFEROMETRIC MODULATOR, PHASE DETECTION IS

required to accomplish the zero-threshold detection in the binary quan-

tizer. Here we present the theory behind this development [76, 77].

Consider the interferometric configuration shown in Figure B. 1. The two point

sources ae-,,,t+) and ae- jt represent the quantizer input signal u(nT) and the mu-

tually coherent reference, respectively. The spatial dimensions d and f are selected

according to physical implementation considerations. Let the intensity distribution

at the object plane, x', be described as

f(z') = [a6(x' - d) + a6(z' + d)e]e- ". (B.1)

Using the Fourier transforming property of the lens, the distribution in the Fourier

plane, x, is

F(x) f j0 a[6(z' - d) + 6(z' + d)e10e-jdte-j'd. (B.2)

Define K -ae- " , then

F(x) = K[e-' + ej 'd +0]  (B.3)

= K[cos(-7dz) - jsin(-wdz + 0) + cos(-5d2r + 4) + jsin(-wdz + ,)]

= K[2os(2wdz + )cos( ) + j2cos(Tdx + 4)s, (4)].
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x x

-d , ae -("ja

Figure B.1: Phase detector for interferometri, modulator.

Next consider the real (R) and imaginary (Qr) parts of F(x)

R[F(x)] = 2Kcos(-2 7rdx + )cos().4)

Qr[F(x)] = 2Kcos(-rdz + )sin().

Described in phasor notation as

IF(x)I = (R[F(X)]2 + Za[F(x)]2)i (B.5)
2ir

= 2Kcos(-dx + t)

f 2

Arg[F(x)] = tan-[tan(.)]= "

And finally, the intensity distribution in the Fourier plane can be described as

I = I[F(z)]12  (B.6)

= 2Kcos'(2dx + 4)

4!r
= K 2[ +cos(--dz + )I.

Af
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The final rep resentation in Equation (B.6) completely describes the operation of

the phase detector in terms of phase difference between the two light distributions,

the distances between the two sources, and the expected Fourier plane locations to

observe peak intensity distributions. Knowing the physical dimensions of the phase

detector and the wavelength of operation, the locations of the intensity maxima

in the Fourier plane for both 0 and ir phase differences can be computed using

Equation (B.6).
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